在等比數(shù)列{an}中,a1=2,a4=16
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令數(shù)學(xué)公式,n∈N*,求數(shù)列{bn}的前n項(xiàng)和Sn

解:(1)設(shè)等比數(shù)列{an}的公比為q依題意a1=2,a4=16,得
∴q3=8,q=2,
∴an=2n
(2)由(1)得log2an=n,log2a n+1=n+1,
bn==-
∴Sn=b1+b2+…+bn=(1-)+(+)+…+(-)=1==
分析:(1)由“a1=2,a4=16”求得公比q再用通項(xiàng)公式求得通項(xiàng).
(2)先將 ==-轉(zhuǎn)化,再用裂項(xiàng)相消法求其前n項(xiàng)和Tn
點(diǎn)評(píng):本題主要考查等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式及其應(yīng)用,求和的常用方法有:倒序相加法,錯(cuò)位相減法,裂項(xiàng)相消法,分組求和等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的公比大于1,且bn=log3
an
2
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,若a1=1,公比q=2,則a12+a22+…+an2=( 。
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,如果a1+a3=4,a2+a4=8,那么該數(shù)列的前8項(xiàng)和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,a1=1,8a2+a5=0,數(shù)列{
1
an
}
的前n項(xiàng)和為Sn,則S5=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,an>0且a2=1-a1,a4=9-a3,則a5+a6=
81
81

查看答案和解析>>

同步練習(xí)冊(cè)答案