已知命題p:?x∈(-∞,0),2x<3x;命題q:?x∈(0,數(shù)學(xué)公式),tanx>sinx,則下列命題為真命題的是


  1. A.
    p∧q
  2. B.
    p∨(﹁q)
  3. C.
    (﹁p)∧q
  4. D.
    p∧(﹁q)
C
分析:由指數(shù)函數(shù)的性質(zhì),我們易判斷命題p的真假,根據(jù)三角函數(shù)的性質(zhì),我們易判斷命題q的真假,然后根據(jù)復(fù)合命題真假判斷的“真值表”我們易得正確答案.
解答:因?yàn)楫?dāng)x<0時(shí),
即2x>3x,所以命題p為假,從而﹁p為真.
因?yàn)楫?dāng)時(shí),,
即tanx>sinx,所以命題q為真.
所以(﹁p)∧q為真,
故選C.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是復(fù)合命題的真假,其中根據(jù):
p∧q時(shí),p與q均為真時(shí)為真,p與q存在假命題即為假;
p∨q時(shí),p與q均為假時(shí)為假,p與q存在真命題即為真;
是判斷復(fù)合命題真假的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:?x∈R,使x2-x+a=0;命題Q:函數(shù)y=
ax-1
ax2+ax+1
的定義域?yàn)镽.
(1)若命題P為真,求實(shí)數(shù)a的取值范圍;
(2)若命題Q為真,求實(shí)數(shù)a的取值范圍;
(3)如果P∧Q為假,P∨Q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,2x2+2x+
1
2
<0
;命題q:?x∈R,sinx-cosx=
2
.則下列判斷正確的是( 。
A、p是真命題
B、q是假命題
C、¬P是假命題
D、¬q是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x=2k+1(k∈Z),命題q:x=4k-1(k∈Z),則p是q的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,x2+2ax+a≤0,則命題p的否定是
?x?R,x2+2ax+a>0
?x?R,x2+2ax+a>0
;若命題p為假命題,則實(shí)數(shù)a的取值范圍是
(0,1)
(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,使2x2+(k-1)x+
1
2
<0;命題q:方程
x2
9-k
-
y2
k-1
=1
表示雙曲線.若p∧q為真命題,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案