過點P(-1,0)作圓C:(x- 1)2 + (y- 2)2 = 1的兩切線,設(shè)兩切點為A、B,圓心為C,則過AB、C的圓方程是
A.x2 + (y - 1)2 =" 2" B.x2 + (y - 1)2 =" 1"
C.(x- 1)2 + y2 =" 4" D.(x- 1)2 + y2 = 1
因為C(1,2),線段PC的中點M(0,1)就是所求圓的圓心,半徑為,所以過AB、C的圓方程是
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知圓軸于、兩點,在圓上運動(不與、重合),過作直線,垂直于交直線于點
(1)求證:“如果直線過點,那么”為真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓的方程是,求經(jīng)過圓上一點的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線交于兩點,為坐標原點,則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求過點A(3,4)與圓C:(x-2)2+(y-1)2=1相切的直線方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓,點,直線.

⑴求與圓相切,且與直線垂直的直線方程
⑵在直線上(為坐標原點),存在定點(不同于點),滿足:對于圓上任一點,都有為一常數(shù),試求所有滿足條件的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C的圓心在直線l1:x-y-1=0上,圓C與直線l2:4x+3y+14=0相切,并且圓C截直線l3:3x+4y+10=0所得弦長為6,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓,點(-2,0)及點(2,),從點觀察點,要使視線不被圓擋住,則的取值范圍是(    )
A.(-∞,-1)∪(-1,+∞)     B.(-∞,-2)∪(2,+∞)   
C.(-∞,)∪(,+∞)   D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C:(x-2)2+(y-1)2=1,求過A(3,4)的圓C的切線方程.

查看答案和解析>>

同步練習冊答案