【題目】已知函數(shù).
(1)求的單調區(qū)間;
(2)若,證明:;
(3)若,直線與曲線相切,證明:.
(參考數(shù)據(jù):,)
【答案】(1)在上單調遞增, 在上單調遞減;(2)見證明;(3)見證明
【解析】
(1)先求得,利用當,得的單調遞增區(qū)間,由,得的單調遞減區(qū)間.
(2)分析可得0是的極小值點,求得a,構造函數(shù),利用導函數(shù)分析可得在上單調遞減,在上單調遞增.則.
從而.
(3)設切點為,列出消掉k,得到.構造函數(shù),分析可得.
構造,分析得到為增函數(shù),可得.得到.
(1).
當,得,則在上單調遞增;
當,得,則在上單調遞減.
(2)因為,所以,則0是的極小值點.
由(1)知,則.
設函數(shù),則.
設函數(shù),則.易知.
則恒成立.
令,得;令,得.
則在上單調遞減,在上單調遞增.
則.
從而,即.
(3)設切點為,
當時,,
則
則.
即.
設函數(shù),
,則為增函數(shù).
又,,
則.
設,則.
若,則,為增函數(shù).
則.又.
故.
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務的工作時間(單位:min)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務所需時間的中位數(shù),并將完成生產(chǎn)任務所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認為兩種生產(chǎn)方式的效率有差異?
附:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(Ⅰ)求的值;
(Ⅱ)記表示事件“從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于80分”,估計的概率;
(Ⅲ)在抽取的100名學生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請在答題卡上將列聯(lián)表補充完整,并判斷是否有的把握認為“比賽成績是否優(yōu)秀與性別有關”?
參考公式及數(shù)據(jù):,.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某年級組織學生參加了某項學術能力測試,為了解參加測試學生的成績情況,從中隨機抽取20名學生的測試成績作為樣本,規(guī)定成績大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀.統(tǒng)計結果如圖:
(1)求的值和樣本的平均數(shù);
(2)從該樣本成績優(yōu)秀的學生中任選兩名,求這兩名學生的成績至少有一個落在內的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),,,其中是的導函數(shù).
(1)令,,,猜想的表達式,并給出證明;
(2)若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com