已知斜三棱柱的三視圖如圖,該斜三棱柱的體積為(  )
A、2
B、4
C、
4
3
D、
2
3
考點:由三視圖求面積、體積
專題:空間位置關系與距離
分析:判斷斜三棱柱的底面三角形的形狀,棱柱的高,即可求解三棱柱的體積.
解答: 解:由三視圖知:斜三棱柱的底面是直角邊長為1和2的直接三角形,棱柱的高為:2.
寫三棱柱的體積為:V=
1
2
×1×2×2=2.
故選:A.
點評:本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某工廠對一批產(chǎn)品進行了抽樣檢測,如圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分散直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106).已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克并且小于102克的產(chǎn)品的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將半徑為2的圓分成相等的四弧,再將四弧圍成星形放在半徑為2的圓內,現(xiàn)在往該圓內任投一點,此點落在星形內的概率為(  )
A、
2
π
B、
4
π
-
1
2
C、
1
2
D、
4
π
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=
1+i
i
-
i
1+i
的虛部為(  )
A、-
3
2
B、-
3
2
i
C、
3
2
D、
3
2
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示程序框圖,則輸出的S的值為( 。
A、21B、25C、45D、93

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足
2x+y≥4
x-y≥-1
x-2y≤2
,則z=x-y( 。
A、有最小值2,無最大值
B、有最小值-1,無最大值
C、有最大值2,無最小值
D、既無最小值,又無最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
b
的夾角為
π
6
,且
a
b
=
3
,則|
a
-
b
|的最小值為( 。
A、4-2
3
B、
3
+1
C、
3
-1
D、4+2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AC=
7
,AB=3,BC=2,M,N,P分別為AC,AB,BC中點,將△ABC沿MN,NP,MP折起得到三棱錐S-MNP,三棱錐S-MNP外接球的表面積為( 。
A、10π
B、8π
C、5π
D、
5
2
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是( 。
A、f(x)=lnx
B、f(x)=
1
x
C、f(x)=ex
D、f(x)=x3

查看答案和解析>>

同步練習冊答案