(2)求函數(shù)y=x+的值域.
(1)解法一:∵0<x<,∴1-3x>0.
∴y=x(1-3x)=·3x(1-3x)≤[]2=,當(dāng)且僅當(dāng)3x=1-3x,即x=時(shí),等號(hào)成立.∴x=時(shí),函數(shù)取得最大值.
解法二:∵0<x<,
∴-x>0.
∴y=x(1-3x)=3x(-x)≤3()2=,當(dāng)且僅當(dāng)x=-x,即x=時(shí),等號(hào)成立.
∴x=時(shí),函數(shù)取得最大值.
(2)解:當(dāng)x>0時(shí),由基本不等式,得y=x+≥=2,當(dāng)且僅當(dāng)x=1時(shí),等號(hào)成立.
當(dāng)x<0時(shí),y=x+=-[(-x)+],
∵-x>0,∴(-x)+≥2,
當(dāng)且僅當(dāng)-x=即x=-1時(shí),等號(hào)成立.
∴y=x+≤-2.
綜上,可知函數(shù)y=x+的值域?yàn)?-∞,-2]∪[2,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:訓(xùn)練必修五數(shù)學(xué)人教A版 人教A版 題型:044
(1)已知0<x<,求函數(shù)y=x(1-3x)的最大值;
(2)求函數(shù)y=x+的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com