已知A,B是拋物線x2=4y上兩個(gè)動(dòng)點(diǎn),且直線AO與直線BO的傾斜角之和為數(shù)學(xué)公式,試證明直線AB過(guò)定點(diǎn).

解:顯然,直線AB與x軸不垂直,設(shè)直線AB的方程為y=kx+m,
代入x2=4y,得:x2-4kx-4m=0.
設(shè)A(x1,y1),B(x2,y2),則:
設(shè)直線AO與直線BO的傾斜角分別為α,β,則α+β=,
,
所以,
即m=4k-4,
直線AB的方程為y=kx+4k-4,即y+4=k(x+4),
所以,直線AB恒過(guò)定點(diǎn)(-4,-4).
分析:設(shè)直線AB的方程為y=kx+m,代入x2=4y,利用韋達(dá)定理表示出A,B坐標(biāo)的關(guān)系,結(jié)合直線AO與直線BO的傾斜角之和為,
建立k,m關(guān)系,研究是否過(guò)定點(diǎn).
點(diǎn)評(píng):本題要求學(xué)生能夠掌握用代數(shù)方法解決幾何問(wèn)題的一般方法:研究直線AB過(guò)定點(diǎn)的問(wèn)題就要通過(guò)直線AB的方程y=kx+m討論問(wèn)題,也就是要找到k與m的關(guān)系.為此,直線AB與拋物線交于不同的兩個(gè)點(diǎn)及對(duì)于條件“直線AO與直線BO的傾斜角之和為”進(jìn)行必要的有效的代數(shù)化就成為解決本題的主要任務(wù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B是拋物線y2=4x上的兩點(diǎn),O是拋物線的頂點(diǎn),OA⊥OB.
(I)求證:直線AB過(guò)定點(diǎn)M(4,0);
(II)設(shè)弦AB的中點(diǎn)為P,求點(diǎn)P到直線x-y=0的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B是拋物線y2=2px(p>0)上兩點(diǎn),O為坐標(biāo)原點(diǎn),若|OA|=|OB|,且△AOB的垂心恰好是此拋物線的焦點(diǎn),則直線AB的方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B是拋物線x2=2py(p>0)上的兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),l為拋物線的準(zhǔn)線.
(1)若過(guò)A點(diǎn)的拋物線的切線與y軸相交于C點(diǎn),求證:|AF|=|CF|;
(2)若
OA
OB
+p2=0
(A、B異于原點(diǎn)),直線OB與過(guò)A且垂直于X軸的直線m相交于P點(diǎn),求P點(diǎn)軌跡方程;
(3)若直線AB過(guò)拋物線的焦點(diǎn),分別過(guò)A、B點(diǎn)的拋物線的切線相交于點(diǎn)T,求證:
AT
BT
=0
,并且點(diǎn)T在l上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•青浦區(qū)二模)(理)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
(1)設(shè)過(guò)點(diǎn)A且斜率為-1的直線l1,與過(guò)點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
(2)問(wèn)題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過(guò)該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問(wèn)題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0=5,試用線段AB中點(diǎn)的縱坐標(biāo)表示線段AB的長(zhǎng)度,并求出中點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•青浦區(qū)二模)(文)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
(1)設(shè)過(guò)點(diǎn)A且斜率為-1的直線l1,與過(guò)點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
(2)問(wèn)題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過(guò)該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問(wèn)題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0>2,試用x0表示線段AB中點(diǎn)的橫坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案