若曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為2x+y+1=0,則


  1. A.
    f′(x0)>0
  2. B.
    f′(x0)=0
  3. C.
    f′(x0)<0
  4. D.
    f′(x0)不存在
C
分析:欲判別f′(x0)的大小,只須求出切線斜率的正負(fù)即可,故結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率,從而得到正確選項(xiàng).
解答:由切線x+2y+1=0的斜率:,

故選C.
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、直線的斜率、導(dǎo)數(shù)的幾何意義等基礎(chǔ)知識(shí),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-
1x
,a∈R.
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+2y=0垂直,求a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=1,且x≥2時(shí),證明:f(x-1)≤2x-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax
+lnx-1,a∈R

(1)若曲線y=f(x)在P(1,y0)處的切線平行于直線y=-x+1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若a>0,且對x∈(0,2e]時(shí),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-1+
aex
(a∈R,e為自然對數(shù)的底數(shù)).
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(Ⅱ)求函數(shù)f(x)的極值;
(Ⅲ)當(dāng)a=1的值時(shí),若直線l:y=kx-1與曲線y=f(x)沒有公共點(diǎn),求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x
+alnx-2(a>0).
(Ⅰ)若曲線y=f(x)在點(diǎn)P(1,f(1))處的切線與直線y=x+2垂直,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若對于任意?x∈(0,+∞)都有f(x)>2(a-1)成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a2
x2+(a+1)x+2ln(x-1)

(Ⅰ)若曲線y=f(x)在點(diǎn)(2,f(2))處的切線與直線2x-y+1=0平行,求出這條切線的方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若對于任意的x∈(1,+∞),都有f(x)<-2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案