【題目】已知函數(shù)f(x)=x2 (x≠0,aR).

(1)判斷函數(shù)f(x)的奇偶性;

(2)若f(x)在區(qū)間[2+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

【答案】見解析

【解析】(1)當(dāng)a=0時(shí),f(x)=x2(x≠0)為偶函數(shù);

當(dāng)a≠0時(shí),f(x)既不是奇函數(shù)也不是偶函數(shù).

(2)解法一 設(shè)x2>x12,f(x1)-f(x2)=xx [x1x2(x1+x2)-a],由x2>x12,得x1x2(x1+x2)>16,x1-x2<0,x1x2>0.

要使f(x)在區(qū)間[2+∞)上是增函數(shù)只需f(x1)-f(x2)<0,

即x1x2(x1+x2)-a>0恒成立,則a≤16.

故a的取值范圍是(-∞,16].

解法二 f′(x)=2x-,要使f(x)在區(qū)間[2,+∞)上是增函數(shù),只需當(dāng)x≥2時(shí),f(x)≥0恒成立,2x0,則a≤2x3[16,+)恒成立,故當(dāng)a≤16時(shí),f(x)在區(qū)間[2,+∞)上是增函數(shù).故a的取值范圍是(-∞,16].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的圖像與函數(shù)h(x)=的圖像關(guān)于點(diǎn)A(0,1)對(duì)稱。

(1)求函數(shù)f(x)的解析式;

(2)若g(x)=xf(x)+ax,且g(x)在區(qū)間(0,4]上為減函數(shù),求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請(qǐng)根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程

3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為直徑的圓經(jīng)過兩點(diǎn),延長、交于點(diǎn),將沿線段折起,使點(diǎn)在底面的射影恰好為的中點(diǎn).若,,線段的中點(diǎn)分別為.

(1)判斷四點(diǎn)是否共面,并說明理由;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直角梯形中,是邊長為2的等邊三角形,沿折起,使處,且;然后再將沿折起,使處,且面,在面的同側(cè)

() 求證:平面;

() 求平面與平面所構(gòu)成的銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面為正方形,側(cè)面底面分別為的中點(diǎn).

(1)求證:平面

(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 名男生, 名女生,在下列不同條件下,求不同的排列方法種數(shù).(最后結(jié)果化成數(shù)

字)

1)排成前后兩排,前排 人,后排 人;

2)全體排成一排,甲不站在排頭也不站在排尾;

3)全體排成一排,女生必須站在一起;

4)全體排成一排,男生不能相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國個(gè)人所得稅》規(guī)定,公民月工資、薪金所得不超過3500元的部分不納稅,超過3500元的部分為全月納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

已知張先生的月工資、薪金所得為10000元,問他當(dāng)月應(yīng)繳納多少個(gè)人所得稅?

設(shè)王先生的月工資、薪金所得為元,當(dāng)月應(yīng)繳納個(gè)人所得稅為元,寫出的函數(shù)關(guān)系式;

(3)已知王先生一月份應(yīng)繳納個(gè)人所得稅為303元,那么他當(dāng)月的個(gè)工資、薪金所得為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究。他們分別記錄了121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子的發(fā)芽數(shù),得到如下資料:

日期

121

122

123

124

125

溫差/

10

11

13

12

8

發(fā)芽數(shù)/

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)若選取的是121日與125日的兩組數(shù)據(jù),請(qǐng)根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程bxa;

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為 得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

(附:,,其中,為樣本平均值)

查看答案和解析>>

同步練習(xí)冊(cè)答案