【題目】甲、乙兩人做游戲,下列游戲不公平的是(

A.拋擲一枚骰子,向上的點數(shù)為奇數(shù)則甲獲勝,向上的點數(shù)為偶數(shù)則乙獲勝

B.甲、乙兩人各寫一個數(shù)字12,如果兩人寫的數(shù)字相同甲獲勝,否則乙獲勝

C.從一副不含大小王的撲克牌中抽一張,撲克牌是紅色的則甲獲勝,撲克牌是黑色的則乙獲勝

D.同時拋擲兩枚硬幣,恰有一枚正面向上則甲獲勝,兩枚都正面向上則乙獲勝

【答案】D

【解析】

求出每個選項中各事件的概率即可

對于A選項,拋擲一枚骰子,向上的點數(shù)為奇數(shù)與向上的點數(shù)為偶數(shù)的概率相等,都為

對于B選項,甲、乙兩人各寫一個數(shù)字12,兩人寫的數(shù)字相同與不相同的概率相等,都為

對于C選項,從一副不含大小王的撲克牌中抽一張,撲克牌是紅色與撲克牌是黑色的概率相等,都為

對于D選項,同時拋擲兩枚硬幣,恰有一枚正面向上的概率為,兩枚都正面向上的概率為

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】4件產(chǎn)品中,有一等品2件,二等品1件(一等品與二等品都是正品),次品1件,現(xiàn)從中任取2件,則下列說法正確的是(

A.兩件都是一等品的概率是

B.兩件中有1件是次品的概率是

C.兩件都是正品的概率是

D.兩件中至少有1件是一等品的概率是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率等于 .現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),指定12,3,4表示命中,5,6,7,89,0,表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了了解學生使用手機的情況,分別在高一和高二兩個年級各隨機抽取了100名學生進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學生日均使用手機時間的頻數(shù)分布表和頻率分布直方圖,將使用手機時間不低于80分鐘的學生稱為“手機迷”.

I)將頻率視為概率,估計哪個年級的學生是“手機迷”的概率大?請說明理由.

II)在高二的抽查中,已知隨機抽到的女生共有55名,其中10名為“手機迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認為“手機迷”與性別有關(guān)?

非手機迷

手機迷

合計

合計

附:隨機變量(其中為樣本總量).

參考數(shù)據(jù)

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)求證: 當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位學生參加數(shù)學競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次預(yù)賽成績中隨機抽取8次,記錄如下:

甲:82 81 79 78 95 88 93 84

乙:92 95 80 75 83 80 90 85

1)用莖葉圖表示這兩組數(shù)據(jù);

2)現(xiàn)要從中選派一人參加數(shù)學競賽,從統(tǒng)計學的角度(平均數(shù)、方差)考慮,你認為選派哪位同學參加合適?請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)的內(nèi)角A,B,C的對邊分別為a,bc,,且B為鈍角,

(1);(2)求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司培訓員工某項技能,培訓有如下兩種方式,方式一:周一到周五每天培訓1小時,周日測試;方式二:周六一天培訓4小時,周日測試.公司有多個班組,每個班組60人,現(xiàn)任選兩組(記為甲組、乙組)先培訓,甲組選方式一,乙組選方式二,并記錄每周培訓后測試達標的人數(shù)如下表,其中第一、二周達標的員工評為優(yōu)秀.

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

(1)在甲組內(nèi)任選兩人,求恰有一人優(yōu)秀的概率;

(2)每個員工技能測試是否達標相互獨立,以頻率作為概率.

(i)設(shè)公司員工在方式一、二下的受訓時間分別為、,求、的分布列,若選平均受訓時間少的,則公司應(yīng)選哪種培訓方式?

(ii)按(i)中所選方式從公司任選兩人,求恰有一人優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預(yù)測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現(xiàn)這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

同步練習冊答案