【題目】如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.
(1)求曲線的方程;
(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.
【答案】(1)(2)這樣的直線不存在.詳見解析
【解析】
(1)設(shè),,則,,且,通過,轉(zhuǎn)化求解即可.
(2)設(shè)M(x1,y1),N(x2,y2),由題意知直線的斜率存在且不為零,設(shè)直線的方程為,代入橢圓方程整理得關(guān)于x的一元二次方程,假設(shè)存在點Q,滿足題意,則其充要條件為,則點Q的坐標為(x1+x2,y1+y2).由此利用韋達定理結(jié)合點Q在曲線上,得到關(guān)于k的方程求解即可.
(1)設(shè),,
則,,
由題意知,所以為中點,
由中點坐標公式得
,
即,
又點在圓:上,故滿足
,
得.
(2)由題意知直線的斜率存在且不為零,
設(shè)直線的方程為,
因為,故,即 ①,
聯(lián)立,
消去得:,
設(shè),,
,,
,
因為為平行四邊形,故,
點在橢圓上,故,整理得,②,
將①代入②,得,該方程無解,
故這樣的直線不存在.
科目:高中數(shù)學 來源: 題型:
【題目】下面幾個命題中,假命題是( )
A. “若,則”的否命題
B. “,函數(shù)在定義域內(nèi)單調(diào)遞增”的否定
C. “是函數(shù)的一個周期”或“是函數(shù)的一個周期”
D. “”是“”的必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的經(jīng)過點.
(1)求拋物線的方程;
(2)過拋物線焦點F的直線l交拋物線于A、B兩點,若|AB|=8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域為的函數(shù),如果存在區(qū)間,其中,同時滿足:
①在內(nèi)是單調(diào)函數(shù):②當定義域為時,的值域為,則稱函數(shù)是區(qū)間上的“保值函數(shù)”,區(qū)間稱為“保值函數(shù)”.
(1)求證:函數(shù)不是定義域上的“保值函數(shù)”;
(2)若函數(shù)()是區(qū)間上的“保值函數(shù)”,求的取值范圍;
(3)對(2)中函數(shù),若不等式對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是拋物線上一點,經(jīng)過點的直線與拋物線交于、兩點(不同于點),直線、分別交直線于點、.
(1)求拋物線方程及其焦點坐標;
(2)求證:以為直徑的圓恰好經(jīng)過原點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,動圓與圓外切,與圓內(nèi)切.
(1)求動圓圓心的軌跡方程;
(2)直線過點且與動圓圓心的軌跡交于、兩點.是否存在面積的最大值,若存在,求出的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當年產(chǎn)量不足80千件時,(萬元);當年產(chǎn)量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過雙曲線的左焦點作圓的切線交雙曲線的右支于點,且切點為,已知為坐標原點,為線段的中點(點在切點的右側(cè)),若的周長為,則雙曲線的漸近線的方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,橢圓:的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標準方程;
(2)是否存在直線:與橢圓相交于兩點,使得?若存在,求的取值范圍;若不存在,請說明理由!
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com