【題目】2016年某市政府出臺了“2020年創(chuàng)建全國文明城市(簡稱創(chuàng)文)”的具體規(guī)劃,今日,作為“創(chuàng)文”項目之一的“市區(qū)公交站點的重新布局及建設(shè)”基本完成,市有關(guān)部門準備對項目進行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否驗收,調(diào)查人員分別在市區(qū)的各公交站點隨機抽取若干市民對該項目進行評分,并將結(jié)果繪制成如圖所示的頻率分布直方圖,相關(guān)規(guī)則為:①調(diào)查對象為本市市民,被調(diào)查者各自獨立評分;②采用百分制評分, 內(nèi)認定為滿意,80分及以上認定為非常滿意;③市民對公交站點布局的滿意率不低于60%即可進行驗收;④用樣本的頻率代替概率.

(1)求被調(diào)查者滿意或非常滿意該項目的頻率;

(2)若從該市的全體市民中隨機抽取3人,試估計恰有2人非常滿意該項目的概率;

(3)已知在評分低于60分的被調(diào)查者中,老年人占,現(xiàn)從評分低于60分的被調(diào)查者中按年齡分層抽取9人以便了解不滿意的原因,并從中選取2人擔任群眾督察員,記為群眾督查員中老年人的人數(shù),求隨機變量的分布列及其數(shù)學期望.

【答案】(1);(2);(3).

【解析】試題分析:(1)根據(jù)直方圖的意義,求出后四個小矩形的面積和即可求得被調(diào)查者滿意或非常滿意該項目的頻率;(2)根據(jù)頻率分布直方圖,被調(diào)查者非常滿意的頻率是

,根據(jù)獨立重復試驗次發(fā)生次的概率公式可得結(jié)果;(3)隨機變量的所有可能取值為0,1,2,利用組合知識根據(jù)古典概型概率公式分別求出各隨機變量的概率,即可得分布列,根據(jù)期望公式可得結(jié)果.

試題解析:(1)根據(jù)題意:60分或以上被認定為滿意或非常滿意,在頻率分布直方圖中,

評分在的頻率為:

;

(2)根據(jù)頻率分布直方圖,被調(diào)查者非常滿意的頻率是

用樣本的頻率代替概率,從該市的全體市民中隨機抽取1人,

該人非常滿意該項目的概率為,

現(xiàn)從中抽取3人恰有2人非常滿意該項目的概率為:

;

3評分低于60分的被調(diào)查者中,老年人占,

又從被調(diào)查者中按年齡分層抽取9人,

∴這9人中,老年人有3人,非老年人6人,

隨機變量的所有可能取值為0,1,2,

的分布列為:

0

1

2

的數(shù)學期望 .

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的增函數(shù)y=f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求證:f(x)為奇函數(shù);
(3)若f(k3x)+f(3x﹣9x﹣4)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家規(guī)定個人稿費納稅辦法是:不超過800元的不納稅;超過800元而不超過4 000元的按超過800元部分的14%納稅;超過4 000元的按全部稿酬的11%納稅.已知某人出版一本書,共納稅420元,這個人應得稿費(扣稅前)為(
A.2800元
B.3000元
C.3800元
D.3818元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f′(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(﹣2)=0,當x>0時,xf′(x)﹣f(x)>0,則使得f(x)>0成立的x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某小區(qū)停車場的收費標準為:每車每次停車時間不超過2小時免費,超過2小時的部分每小時收費1元(不足1小時的部分按1小時計算).現(xiàn)有甲乙兩人相互獨立到停車場停車(各停車一次),且兩人停車的時間均不超過5小時,設(shè)甲、乙兩人停車時間(小時)與取車概率如下表所示:

(1)求甲、乙兩人所付車費相同的概率;

(2)設(shè)甲、乙兩人所付停車費之和為隨機變量,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos2x﹣sinxcosx﹣sin2x.

(Ⅰ)求函數(shù)f(x)取得最大值時x的集合;

(Ⅱ) 設(shè)A、B、C為銳角三角形ABC的三個內(nèi)角,若cosB=,f(C)=﹣,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知冪函數(shù) (m∈Z)的圖象關(guān)于y軸對稱,且在區(qū)間(0,+∞)為減函數(shù)
(1)求m的值和函數(shù)f(x)的解析式
(2)解關(guān)于x的不等式f(x+2)<f(1﹣2x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間20名工人年齡數(shù)據(jù)如下表:

年齡(歲)

19

24

26

30

34

35

40

合計

工人數(shù)(人)

1

3

3

5

4

3

1

20

(1)求這20名工人年齡的眾數(shù)與平均數(shù);

(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;

(3)從年齡在24和26的工人中隨機抽取2人,求這2人均是24歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=
(1)判斷函數(shù)f(x)的奇偶性并證明;
(2)證明f(x)是定義域內(nèi)的增函數(shù);
(3)解不等式f(1﹣m)+f(1﹣m2)>0.

查看答案和解析>>

同步練習冊答案