【題目】某公司試銷一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y()與銷售單價(jià)x()之間的關(guān)系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

(1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本總價(jià))S元.試問銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷售量是多少?

【答案】(1) y=-x1000(500≤x≤800)

(2) 銷售單價(jià)定為750元時(shí),可獲得最大毛利潤(rùn)62500元,此時(shí)銷售量為250

【解析】試題分析:(1)由于為一次函數(shù)所以只需從圖中找兩點(diǎn)坐標(biāo)代入即可;(2)銷售總價(jià)銷售單價(jià)銷售量,成本總價(jià)成本單價(jià)銷售量,得毛利潤(rùn)為關(guān)于的一元二次函數(shù)注意,為二次函數(shù)給定區(qū)間求最值問題.

試題解析:由圖象知,當(dāng)時(shí),;當(dāng)時(shí),,

分別代入,解得,,

所以6

銷售總價(jià)銷售單價(jià)銷售量,成本總價(jià)成本單價(jià)銷售量,

代入求毛利潤(rùn)的公式,得

10

,

當(dāng)時(shí),,此時(shí)14

答:當(dāng)銷售單價(jià)為/件時(shí),可獲得最大毛利潤(rùn)為元,此時(shí)銷售量為件. 16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,且是偶函數(shù).

(1)求實(shí)數(shù)的值;

(2)證明:函數(shù)上是減函數(shù);

(3)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子元件廠對(duì)一批新產(chǎn)品的使用壽命進(jìn)行檢驗(yàn),并且廠家規(guī)定使用壽命在為合格品,使用壽命超過500小時(shí)為優(yōu)質(zhì)品,質(zhì)檢科抽取了一部分產(chǎn)品做樣本,經(jīng)檢測(cè)統(tǒng)計(jì)后,繪制出了該產(chǎn)品使用壽命的頻率分布直方圖(如圖):

(1)根據(jù)頻率分布直方圖估計(jì)該廠產(chǎn)品為合格品或優(yōu)質(zhì)品的概率,并估計(jì)該批產(chǎn)品的平均使用壽命;

(2)從這批產(chǎn)品中,采取隨機(jī)抽樣的方法每次抽取一件產(chǎn)品,抽取4次,若以上述頻率作為概率,記隨機(jī)變量為抽出的優(yōu)質(zhì)品的個(gè)數(shù),列出的分布列,并求出其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分,第(1)問 4 分,第(2)問 8 分)

某闖關(guān)游戲規(guī)則是:先后擲兩枚骰子,將此實(shí)驗(yàn)重復(fù)輪,第輪的點(diǎn)數(shù)分別記為,如果點(diǎn)數(shù)滿足,則認(rèn)為第輪闖關(guān)成功,否則進(jìn)行下一輪投擲,直到闖關(guān)成功,游戲結(jié)束。

求第一輪闖關(guān)成功的概率;

如果游戲只進(jìn)行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進(jìn)行的輪數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆廣東省深圳市高三下學(xué)期第一次調(diào)研考試(一模)數(shù)學(xué)(文)】已知函數(shù)的導(dǎo)函數(shù),為自然對(duì)數(shù)的底數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),證明:

(3)當(dāng)時(shí),判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆云南曲靖一中高三文上學(xué)期月考四】已知函數(shù)

(1)若的極值點(diǎn),的極大值

(2)求的范圍,使得恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用、、三種人工降雨方式分別對(duì)甲、乙、丙三地實(shí)施人工降雨,其試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)如表:

方式

實(shí)施地點(diǎn)

大雨

中雨

小雨

模擬實(shí)驗(yàn)總次數(shù)

4次

6次

2次

12次

3次

6次

3次

12次

2次

2次

8次

12次

假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請(qǐng)你根據(jù)人工降雨模擬實(shí)驗(yàn)的統(tǒng)計(jì)數(shù)據(jù):

(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;

(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只能是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個(gè)數(shù)”為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在點(diǎn)處的切線方程為,求的值;

(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】底面為菱形的直棱柱

中,

分別為棱

的中點(diǎn).

(1)在圖中作一個(gè)平面

,使得

,且平面

.(不必給出證明過程,只要求作出

與直棱柱

的截面).

(2)若

,求平面

與平面

的距離

.

查看答案和解析>>

同步練習(xí)冊(cè)答案