【題目】已知函數(shù)f(x)=lnx﹣ ax2+x,a∈R.
(1)若f(1)=0,求函數(shù)f(x)的最大值;
(2)令g(x)=f(x)﹣(ax﹣1),求函數(shù)g(x)的單調(diào)區(qū)間;
(3)若a=﹣2,正實(shí)數(shù)x1 , x2滿足f(x1)+f(x2)+x1x2=0,證明x1+x2

【答案】
(1)解:因?yàn)閒(1)= ,所以a=2.

此時(shí)f(x)=lnx﹣x2+x,x>0,

,

由f'(x)=0,得x=1,所以f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,

故當(dāng)x=1時(shí)函數(shù)有極大值,也是最大值,所以f(x)的最大值為f(1)=0.


(2)解: ,

所以

當(dāng)a≤0時(shí),因?yàn)閤>0,所以g′(x)>0.

所以g(x)在(0,+∞)上是遞增函數(shù),

當(dāng)a>0時(shí),

令g′(x)=0,得

所以當(dāng) 時(shí),g′(x)>0;當(dāng) 時(shí),g′(x)<0,

因此函數(shù)g(x)在 是增函數(shù),在 是減函數(shù).

綜上,當(dāng)a≤0時(shí),函數(shù)g(x)的遞增區(qū)間是(0,+∞),無(wú)遞減區(qū)間;

當(dāng)a>0時(shí),函數(shù)g(x)的遞增區(qū)間是 ,遞減區(qū)間是


(3)解:由x1>0,x2>0,即x1+x2>0.

令t=x1x2,則由x1>0,x2>0得, .t>0

可知,φ(t)在區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增.

所以φ(t)≥φ(1)=1,

所以 ,解得

又因?yàn)閤1>0,x2>0,

因此 成立.


【解析】(1)先求出a的值,然后求原函數(shù)的極值即可;(2)求導(dǎo)數(shù),然后通過(guò)研究不等式的解集確定原函數(shù)的單調(diào)性;(3)結(jié)合已知條件構(gòu)造函數(shù),然后結(jié)合函數(shù)單調(diào)性得到要證的結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐的底面是梯形,且, 平面中點(diǎn),

)求證: 平面

)若, ,求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓Γ: + =1(a>b>0)的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個(gè)面積為2的等腰直角三角形,O為坐標(biāo)原點(diǎn):

(1)求橢圓Г的方程:
(2)設(shè)點(diǎn)A在橢圓Г上,點(diǎn)B在直線y=2上,且OA⊥OB,求證: + 為定值:
(3)設(shè)點(diǎn)C在Γ上運(yùn)動(dòng),OC⊥OD,且點(diǎn)O到直線CD距離為常數(shù)d(0<d<2),求動(dòng)點(diǎn)D的軌跡方程:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F(xiàn)分別為BC,AD的中點(diǎn),點(diǎn)M在線段PD上.

(1)求證:EF⊥平面PAC;
(2)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017河北唐山三!已知函數(shù) .

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)在區(qū)間有唯一零點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,sin2B=2sinAsinC.
(1)若a=b,求cosB的值;
(2)若B=60°,△ABC的面積為4 ,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AB=PA=1,AD= ,F(xiàn)是PB中點(diǎn),E為BC上一點(diǎn).

(1)求證:AF⊥平面PBC;
(2)當(dāng)BE為何值時(shí),二面角C﹣PE﹣D為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017山西孝義考前熱身】已知函數(shù) (是常數(shù)),

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),函數(shù)有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)

設(shè)ABC三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a,b,c. 已知C=,acosA=bcosB.

(1)求角A的大小;

(2)如圖,在ABC的外角ACD內(nèi)取一點(diǎn)P,使得PC=2.過(guò)點(diǎn)P分別作直線CA、CD的垂線PM、PN,垂足分別是M、N.設(shè)PCA=α,求PM+PN的最大值及此時(shí)α的取值.

查看答案和解析>>

同步練習(xí)冊(cè)答案