已知為坐標(biāo)原點(diǎn),為橢圓軸正半軸上的焦點(diǎn),過(guò)且斜率為的直線交與、兩點(diǎn),點(diǎn)滿足.

(1)證明:點(diǎn)上;
(2)設(shè)點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)為,證明:、、四點(diǎn)在同一圓上.
(1)見(jiàn)解析    (2)見(jiàn)解析
(1),的方程為,代入并化簡(jiǎn)得
.                  2分
設(shè),


由題意得
所以點(diǎn)的坐標(biāo)為.
經(jīng)驗(yàn)證點(diǎn)的坐標(biāo)滿足方程,故點(diǎn)在橢圓上 …6分
(2)由和題設(shè)知,,的垂直平分線的方程為
.                       ①
設(shè)的中點(diǎn)為,則,的垂直平分線的方程為
.                      ②
由①、②得、的交點(diǎn)為.         9分
,
,
,
,
,
故    ,
又     , ,
所以   ,
由此知、、四點(diǎn)在以為圓心,為半徑的圓上.           2分
(2)法二: 

同理


所以互補(bǔ),
因此A、P、B、Q四點(diǎn)在同一圓上。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱(chēng)軸,且該橢圓以拋物線的焦點(diǎn)為其一個(gè)焦點(diǎn),以雙曲線的焦點(diǎn)為頂點(diǎn)。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),且分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)是線段上的動(dòng)點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)F1是橢圓(a>b>0)的一個(gè)焦點(diǎn),PQ是經(jīng)過(guò)另一個(gè)焦點(diǎn)F2的弦,則△PF1Q的周長(zhǎng)是(  )
A.4aB.4bC.2aD.2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)橢圓上的動(dòng)點(diǎn)Q,過(guò)動(dòng)點(diǎn)Q作橢圓的切線l,過(guò)右焦點(diǎn)作l的垂線,垂足為P,則點(diǎn)P的軌跡方程為( 。
A.x2+y2=a2B.x2+y2=b2
C.x2+y2=c2D.x2+y2=e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知橢圓經(jīng)過(guò)點(diǎn),一個(gè)焦點(diǎn)是
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓軸的兩個(gè)交點(diǎn)為、,點(diǎn)在直線上,直線、分別與橢圓交于兩點(diǎn).試問(wèn):當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線是否恒經(jīng)過(guò)定點(diǎn)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本大題共12分)
過(guò)點(diǎn)P(1,0)作直線交橢圓于A,B兩點(diǎn),若,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓+=1的焦點(diǎn)分別是,是橢圓上一點(diǎn),若連結(jié)、三點(diǎn)恰好能構(gòu)成直角三角形,則點(diǎn)到y(tǒng)軸的距離是
A.B.3C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線與橢圓恒有公共點(diǎn),則實(shí)數(shù)的取值范圍為 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,用與底面成30°角的平面截圓柱得一橢圓截線,則該橢圓的離心率為  (     )
  
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案