已知雙曲線C的焦點(diǎn)、實(shí)軸端點(diǎn)分別恰好是橢圓
x2
25
+
y2
16
=1
的長軸端點(diǎn)、焦點(diǎn),則雙曲線C的漸近線方程為( 。
A、4x±3y=0
B、3x±4y=0
C、4x±5y=0
D、5x±4y=0
分析:依據(jù)題意,求得雙曲線C 的焦點(diǎn)坐標(biāo)和實(shí)軸端點(diǎn) 坐標(biāo),求得曲線的標(biāo)準(zhǔn)方程,從而求得雙曲線C的漸近線方程.
解答:解:橢圓
x2
25
+
y2
16
=1
的長軸端點(diǎn)為(±5,0),焦點(diǎn)為(±3,0).
由題意可得,對雙曲線C,焦點(diǎn)(±5,0),實(shí)軸端點(diǎn)為(±3,0),∴a=3,c=5,b=4,
故雙曲線C的 方程為
x2
9
-
y2
16
=1
,故漸近線方程為 y=±
4
3
x
,即 4x±3y=0,
故選A.
點(diǎn)評:本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,求出雙曲線的標(biāo)準(zhǔn)方程 是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的焦點(diǎn)、實(shí)軸端點(diǎn)恰好是橢圓
x2
25
+
y2
16
=1的長軸端點(diǎn)、焦點(diǎn),則雙曲線C的漸近線方程是
4x±3y=0
4x±3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的焦點(diǎn)分別為F1(-2,0),F(xiàn)2(2,0),一條漸近線方程為y=
3
3
x
,過F1的直線l交雙曲線于A,B兩點(diǎn).
(1)寫出C的方程;
(2)若A,B分別在左右兩支,求直線l斜率的取值范圍;
(3)若直線l斜率為1,求△ABF2的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的焦點(diǎn)、實(shí)軸端點(diǎn)恰好是橢圓的長軸端點(diǎn)、焦點(diǎn),則雙曲線C的漸近線方程是____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東高三六校第一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知雙曲線C的焦點(diǎn)、實(shí)軸端點(diǎn)恰好是橢圓的長軸端點(diǎn)、焦點(diǎn),則雙曲線C的漸近線方程是____________________.

 

查看答案和解析>>

同步練習(xí)冊答案