【題目】已知圓,為上任意一點(diǎn),,的垂直平分線交于點(diǎn),記點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)已知點(diǎn),過(guò)的直線交于兩點(diǎn),證明:直線的斜率與直線的斜率之和為定值.
【答案】(1)(2)證明見(jiàn)解析
【解析】
(1)由PF的中垂線可得GP=GF,而GP+GE=PE=4,進(jìn)而可得G的軌跡為橢圓;且可得F,E為橢圓的焦點(diǎn),PE的長(zhǎng)為長(zhǎng)軸長(zhǎng),進(jìn)而求出橢圓的方程;(2)設(shè)直線MN的方程,與橢圓聯(lián)立求出兩根之和及兩根之積,進(jìn)而求出直線SM,SN的斜率之和,將之和及之積代入,由由于Q在直線上,可得參數(shù)的關(guān)系,進(jìn)而可得斜率之和為定值.
(1)因?yàn)辄c(diǎn)在的垂直平分線上,所以.
而,
所以動(dòng)點(diǎn)滿足,
橢圓定義可知,點(diǎn)在以、為焦點(diǎn)的橢圓上,且,
所以,
所以曲線的方程為.
(2)由題意知直線斜率存在.
設(shè)其方程為,,,
聯(lián)立方程組代入消元并整理得:
,
則,.
,將直線方程代入,整理得:
,
韋達(dá)定理代入化簡(jiǎn)得:.
因?yàn)橹本過(guò)點(diǎn),所以,
代入,得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某保險(xiǎn)公司的某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買(mǎi)該險(xiǎn)種的投保人稱(chēng)為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | ≥4 |
保費(fèi)(元) |
隨機(jī)調(diào)查了該險(xiǎn)種的名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到下表:
出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | ≥4 |
頻數(shù) | 280 | 80 | 24 | 12 | 4 |
該保險(xiǎn)公司這種保險(xiǎn)的賠付規(guī)定如下:
出險(xiǎn)序次 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次及以上 |
賠付金額(元) |
將所抽樣本的頻率視為概率.
(1)求本年度續(xù)保人保費(fèi)的平均值的估計(jì)值;
(2)按保險(xiǎn)合同規(guī)定,若續(xù)保人在本年度內(nèi)出險(xiǎn)次,則可獲得賠付元;依此類(lèi)推,求本年度續(xù)保人所獲賠付金額的平均值的估計(jì)值;
(3)續(xù)保人原定約了保險(xiǎn)公司的銷(xiāo)售人員在上午之間上門(mén)簽合同,因?yàn)槔m(xù)保人臨時(shí)有事,外出的時(shí)間在上午之間,請(qǐng)問(wèn)續(xù)保人在離開(kāi)前見(jiàn)到銷(xiāo)售人員的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班A、B兩名學(xué)生六次數(shù)學(xué)測(cè)驗(yàn)成績(jī)(百分制)如圖所示:
①A同學(xué)成績(jī)的中位數(shù)大于B同學(xué)成績(jī)的中位數(shù);
②A同學(xué)的平均分比B同學(xué)高;
③A同學(xué)的平均分比B同學(xué)低;
④A同學(xué)成績(jī)方差小于B同學(xué)的方差,
以上說(shuō)法中正確的是( )
A.③④B.①②④C.②④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是某省從1月21日至2月24日的新冠肺炎每日新增確診病例變化曲線圖.
若該省從1月21日至2月24日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項(xiàng)和為,則下列說(shuō)法中正確的是( )
A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列
C.數(shù)列的最大項(xiàng)是D.數(shù)列的最大項(xiàng)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)直線(為參數(shù))與曲線交于兩點(diǎn),與軸交于,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“總把新桃換舊符”(王安石)、“燈前小草寫(xiě)桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日,在宋代人們用寫(xiě)“桃符”的方式來(lái)祈福避禍,而現(xiàn)代人們通過(guò)貼“!弊帧①N春聯(lián)、掛燈籠等方式來(lái)表達(dá)對(duì)新年的美好祝愿,某商家在春節(jié)前開(kāi)展商品促銷(xiāo)活動(dòng),顧客凡購(gòu)物金額滿50元,則可以從“!弊帧⒋郝(lián)和燈籠這三類(lèi)禮品中任意免費(fèi)領(lǐng)取一件,若有4名顧客都領(lǐng)取一件禮品,則他們中有且僅有2人領(lǐng)取的禮品種類(lèi)相同的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(其中為參數(shù)).在以為極點(diǎn)、軸的非負(fù)半軸為極軸的極坐標(biāo)系(兩種坐標(biāo)系的單位長(zhǎng)度相同)中,曲線:的焦點(diǎn)的極坐標(biāo)為.
(1)求常數(shù)的值;
(2)設(shè)與交于、兩點(diǎn),且,求的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)中,曲線的極坐標(biāo)方程為.
(1)將與的方程化為極坐標(biāo)方程;
(2)若曲線與的公共點(diǎn)都在上,,求r.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),若在上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(2)若在,處取得極值,且方程在上有唯一解時(shí),的取值范圍為或,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com