在四棱錐P-ABCD中,側(cè)面PDC是邊長(zhǎng)2的正三角形且與底面ABCD垂直,底面ABCD是面積為2
3
的菱形,∠ADC為銳角.
(1)求證:PA⊥CD
(2)求二面角P-AB-D的大。
(Ⅰ)過P作PE⊥CD于E連接AE
∵側(cè)面PDC⊥底面ABCD,PE?側(cè)面PDC,且PE⊥CD,
∴PE⊥底面ABCD
∵2×
1
2
AD•DCsin∠ADE=2
3

∠ADC=
π
3

故△ADC是邊長(zhǎng)為2的等邊三角形
∵E為DC的中點(diǎn),∴AE⊥CD
∴PA⊥CD
(Ⅱ)∵PA⊥CD,AE⊥CD,CDAB,∴PA⊥AB.AE⊥AB,
∴∠PAE就是二面角P-AB-D的平面角
∵△ADC和△PDC都是邊長(zhǎng)為2的正三角形,
∴PE=AE,又∵PE⊥AE,
∴∠APE=45°即二面角P-AB-D的大小為45°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,平面四邊形ABCD中,∠BAD=∠BCD=90°,∠ABD=60°,∠CBD=45°,將△ABD沿對(duì)角線BD折起,得四面體ABCD,使得點(diǎn)A在平面BCD上的射影在線段BC上,設(shè)AD與平面BCD所成角為θ,則sinθ=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在矩形ABCD中,AB=3,AD=4,PA⊥平面ABCD,PA=
4
5
3
,那么二面角A-BD-P的大為( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將正方形ABCD沿對(duì)角線BD折成直二面角,則折起后∠ADC的大小為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


如圖,已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD繞CD旋轉(zhuǎn)至
A′CD,使點(diǎn)A'與點(diǎn)B之間的距離A′B=
3

(1)求證:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大。
(3)求異面直線A′C與BD所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面α與平面β相交成一個(gè)銳二面角θ,平面α上的一個(gè)圓在平面β上的射影是一個(gè)離心率為
1
2
的橢圓,則θ等于(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD繞CD旋轉(zhuǎn)至A′CD,使A′B=
3

(1)求證:BA′⊥面A′CD;
(2)求異面直線A′C與BD所成角的余弦值.
(3)(理科做)求二面角A′-CD-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

平行四邊形ABCD中,AB=3,AD=5,DB=4,以BD為棱把四邊形ABCD折成1200的二面角,則AC的長(zhǎng)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2
2
,∠ACB=90°,M是AA1的中點(diǎn),N是BC1的中點(diǎn)
(1)求證:MN平面A1B1C1;
(2)求點(diǎn)C1到平面BMC的距離;
(3)求二面角B-C1M-A1的平面角的余弦值大。

查看答案和解析>>

同步練習(xí)冊(cè)答案