已知定義在R上函數(shù)f(x)是偶函數(shù),對(duì)x∈R都有f(2+x)=-f(2-x),當(dāng)f(-3)=-2 時(shí),f (2007)的值為


  1. A.
    2
  2. B.
    -2
  3. C.
    4
  4. D.
    -4
A
分析:由題意:f(2+x)=-f(2-x)”可得f(x)=-f(4-x),由函數(shù)f(x)是偶函數(shù)可得f(x)=f(-x),結(jié)合兩者得f(x-4)=-f(x),它是以8為周期的周期函數(shù),
f(2007)=f(-1)=f(1),從而解決問(wèn)題.
解答:∵f(2+x)=-f(2-x),
令t=2+x,則2-x=4-t
∴f(x)=-f(4-x),
∵由函數(shù)f(x)是偶函數(shù)
∴f(x)=f(-x),
∴結(jié)合兩者得f(x-4)=-f(x),f(x-8)=f[(x-4)-4]=-f(x-4)=f(x),
它是周期函數(shù),且周期為8,
∴f(2007)=f(250×8+7)=f(7)=f(-1)=f(1)
在f(2+x)=-f(2-x)中,令x=1,得f(3)=-f(1)=-2,
∴f(1)=2,即f(2007)=2
故選A.
點(diǎn)評(píng):本題考查抽象函數(shù)的周期性、函數(shù)值求解,抽象函數(shù)是相對(duì)于給出具體解析式的函數(shù)來(lái)說(shuō)的,它雖然沒(méi)有具體的表達(dá)式,但是有一定的對(duì)應(yīng)法則,滿足一定的性質(zhì),這種對(duì)應(yīng)法則及函數(shù)的相應(yīng)的性質(zhì)是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上函數(shù)f(x)=
b-2x
a+2x+1
是奇函數(shù).
(1)對(duì)于任意t∈R不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
(2)若對(duì)于任意實(shí)數(shù),m,x,f(x)<m2+2tm+t+
5
2
恒成立,求t的取值范圍.
(3)若g(x)是定義在R上周期為2的奇函數(shù),且當(dāng)x∈(-1,1)時(shí),g(x)=f(x)-x,求g(x)=0的所有解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上函數(shù)f(x)部分自變量與函數(shù)值對(duì)應(yīng)關(guān)系如表,若f(x)為偶函數(shù),且在[0,+∞)上為增函數(shù),不等式-1≤f(x)<3的解集是( 。
x 0 2 3 4
y -1 1 2 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列幾個(gè)命題:
①函數(shù)y=
1
x+1
在(-∞,-1)∪(-1,+∞)上是減函數(shù);
②已知f(x)在R上是增函數(shù),若a+b>0,則有f(a)+f(b)>f(-a)+f(-b);
③已知函數(shù)y=f(x)是R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x(1+
3x
)
,則當(dāng)x<0時(shí),f(x)=-x(1-
3x
)
;
④已知定義在R上函數(shù)f(x)滿足對(duì)?x,y∈R,f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)>0,則f(x)是R上的增函數(shù);⑤如果a>1,則函數(shù)f(x)=ax-x-a(a>0且a≠1)有兩個(gè)零點(diǎn).
其中正確命題的序號(hào)是
 
.(寫(xiě)出全部正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上函數(shù)f(x)是偶函數(shù),對(duì)x∈R都有f(2+x)=-f(2-x),當(dāng)f(-3)=-2 時(shí),f (2007)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上函數(shù)f(x)是奇函數(shù),對(duì)x∈R都有f(2+x)=-f(2-x),則f(2012)=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案