【題目】某企業(yè)有甲、乙兩條生產(chǎn)線生產(chǎn)同一種產(chǎn)品,為了檢測(cè)兩條生產(chǎn)線產(chǎn)品的質(zhì)量情況,隨機(jī)從兩條生產(chǎn)線 生產(chǎn)的大量產(chǎn)品中各抽取了 40件產(chǎn)品作為樣本,檢測(cè)某一項(xiàng)質(zhì)量指標(biāo)值,得到如圖所示的頻率分布直方圖,若,亦則該產(chǎn)品為示合格產(chǎn)品,若,則該產(chǎn)品為二等品,若,則該產(chǎn)品為一等品.
(1)用樣本估計(jì)總體的思想,從甲、乙兩條生產(chǎn)線中各隨機(jī)抽取一件產(chǎn)品,試估計(jì)這兩件產(chǎn)品中恰好一件為二等品,一件為一等品的概率;
(2)根據(jù)圖1和圖2,對(duì)兩條生產(chǎn)線從樣本的平均值和方差方面進(jìn)行比較,哪一條生產(chǎn)線更好;
(3)從甲生產(chǎn)線的樣本中,滿(mǎn)足質(zhì)量指標(biāo)值在的產(chǎn)品中隨機(jī)選出3件,記為指標(biāo)值在中的件數(shù),求的分布列和數(shù)學(xué)期望
【答案】(1)(2)乙生產(chǎn)線更好(3)見(jiàn)解析
【解析】分析:(1)由頻率分布直方圖可知,甲、乙生產(chǎn)線一、二等品的概率,利用獨(dú)立事件乘法公式可得結(jié)果;(2)求出兩條生產(chǎn)線樣本的平均值,由頻率分布直方圖可知,甲生產(chǎn)線的數(shù)據(jù)較為分散,乙生產(chǎn)線的數(shù)據(jù)較為集中,從而作出判斷;(3)由題意可知的取值為0,1,2,3,求出相應(yīng)的概率值,即可求出的分布列和數(shù)學(xué)期望.
詳解:(1)由頻率分布直方圖可知,甲生產(chǎn)線中二等品的概率為,
—等品的概率為,
乙生產(chǎn)線中二等品的概率為,
一等品的概率為,
所以?xún)杉a(chǎn)品中一件為二等品,一件為一等品的概率為.
(2)設(shè)兩條生產(chǎn)線樣本的平均值分別為,則,
,
由頻率分布直方圖可知,甲生產(chǎn)線的數(shù)據(jù)較為分散,乙生產(chǎn)線的數(shù)據(jù)較為集中,所以甲生產(chǎn)線的數(shù)據(jù)方差大于乙生產(chǎn)線的數(shù)據(jù)方差,所以乙生產(chǎn)線更好.
(3)甲生產(chǎn)線樣本質(zhì)量指標(biāo)值在的件數(shù)為,
質(zhì)量指標(biāo)值在的件數(shù)為,
由題意可知的取值為0,1,2,3;
所以,
,
,
.
所以的分布列為:
的數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,已知都是邊長(zhǎng)為的等邊三角形,為中點(diǎn),且平面,為線段上一動(dòng)點(diǎn),記.
(1)當(dāng)時(shí),求異面直線與所成角的余弦值;
(2)當(dāng)與平面所成角的正弦值為時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:的焦點(diǎn)為F,M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),O為坐標(biāo)原點(diǎn),記經(jīng)過(guò)M,F,O三點(diǎn)的圓的圓心為Q,且點(diǎn)Q到拋物線C的準(zhǔn)線的距離為.
Ⅰ求點(diǎn)Q的縱坐標(biāo);可用p表示
Ⅱ求拋物線C的方程;
Ⅲ設(shè)直線l:與拋物線C有兩個(gè)不同的交點(diǎn)A,若點(diǎn)M的橫坐標(biāo)為2,且的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),有下列命題:①當(dāng)時(shí),是增函數(shù);當(dāng)時(shí),是減函數(shù);②其圖象關(guān)于軸對(duì)稱(chēng);③無(wú)最大值,也無(wú)最小值;④在區(qū)間上是增函數(shù);⑤的最小值是。其中所有不正確命題的序號(hào)是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:
則下面結(jié)論中不正確的是
A. 新農(nóng)村建設(shè)后,種植收入減少
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有關(guān)命題的說(shuō)法正確的是( )
A. 命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B. “m=1”是“直線x-my=0和直線x+my=0互相垂直”的充要條件
C. 命題“,使得”的否定是﹕“,均有”
D. 命題“已知、B為一個(gè)三角形的兩內(nèi)角,若A=B,則sinA=sinB”的否命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計(jì)劃在市的區(qū)開(kāi)設(shè)分店,為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店聽(tīng)其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù), 表示這個(gè)個(gè)分店的年收入之和.
(個(gè)) | 2 | 3 | 4 | 5 | 6 |
(百萬(wàn)元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經(jīng)過(guò)初步判斷,可用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;
(2)假設(shè)該公司在區(qū)獲得的總年利潤(rùn)(單位:百萬(wàn)元)與之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在區(qū)開(kāi)設(shè)多少個(gè)分時(shí),才能使區(qū)平均每個(gè)分店的年利潤(rùn)最大?
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,側(cè)面底面,為等腰直角三角形,,為 直角梯形,.
(1)若為的中點(diǎn),上一點(diǎn)滿(mǎn)足,求證:平面;
(2)若,求四棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xy中,曲線C的參數(shù)方程為為參數(shù)),在以為極點(diǎn),軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為。
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)直線與曲線C相交于A,B兩點(diǎn),P為曲C上的一動(dòng)點(diǎn),求△PAB面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com