一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是(  )
A、1
B、2
C、
2
3
D、
1
3
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題
分析:根據(jù)三視圖得出幾何體是一個(gè)三棱柱,求出它的底面積與高,即得體積.
解答: 解:根據(jù)該幾何體的三視圖知,該幾何體是一個(gè)平放的三棱柱;
它的底面三角形的面積為S底面=
1
2
×1×1=
1
2
,
棱柱高為h=2;
∴棱柱的體積為S棱柱=S底面h=
1
2
×2=1;
故選:A.
點(diǎn)評(píng):本題考查了根據(jù)三視圖求幾何體的體積的問(wèn)題,解題的關(guān)鍵是由三視圖得出幾何體是什么幾何體,從而作答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x),對(duì)任意x∈R都有f(x+2)=f(x),當(dāng)x∈(-2,0)時(shí),f(x)=2x,則f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

小強(qiáng)和小華兩位同學(xué)約定下午在武榮公園籃球場(chǎng)見面,約定誰(shuí)先到后必須等10分鐘,這時(shí)若另一人還沒(méi)有來(lái)就可以離開.如果小強(qiáng)是1:40分到達(dá)的,假設(shè)小華在1點(diǎn)到3點(diǎn)內(nèi)到達(dá),且小華在1點(diǎn)到3點(diǎn)之間何時(shí)到達(dá)是等可能的,則他們會(huì)面的概率是( 。
A、
1
9
B、
1
6
C、
1
4
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=kx-4k+1與曲線y=-1+
1-x2
恰有一個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)利是一種計(jì)算利息的方法,即把前一期的利息和本金加在一起算做本金,再計(jì)算下一期的利息.現(xiàn)有一種儲(chǔ)蓄按復(fù)利計(jì)算利息,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,則y隨著x變化的函數(shù)式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平行四邊形ABCD中,E為CD的中點(diǎn).若在平行四邊形ABCD內(nèi)部隨機(jī)取一點(diǎn)M,則點(diǎn)M取自△ABE內(nèi)部的概率為( 。
A、
3
2
B、
3
4
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos2(x-
π
6
)-sin2x,x∈[0,
π
2
].
(1)求f(
π
12
)的值; 
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2x+
3
sinxcosx-1

(1)求函數(shù)的最小正周期;
(2)當(dāng)x∈[-
π
12
π
2
]
時(shí),求函數(shù)f(x)的值域;
(3)先將函數(shù)y=f(x)的圖象向左平移
π
12
個(gè)單位得到函數(shù)y=F(x)的圖象,再將y=F(x)的圖象橫坐標(biāo)擴(kuò)大到原來(lái)的2倍縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求證:直線2x-2y-1=0與y=g(x)的圖象相切于(0,-
1
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將389化成四進(jìn)制數(shù),則該四進(jìn)制數(shù)的最后一位數(shù)字是(  )
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案