已知△ABC內(nèi)接于以0為圓心,1為半徑的圓,且3•
OA
+4•
OB
+5•
OC
=
0
,則S△ABC=
 
分析:先根據(jù)向量的數(shù)量積運算得到|
OC
|和
OA
OB
,然后以O(shè)為原點,
OA
,
OB
為x,y軸建立平面直角坐標系,設(shè)出C的坐標,表示出
OA
、
OB
、
OC
,進而可求出C的坐標,最后根據(jù)S=S△oab+S△obc+S△oac可求出答案.
解答:解:(3
OA
+4
OB
2=9+16+24
OA
OB
=(-5
OC
2=25.
則:
OA
OB
=0,
OA
OB

以O(shè)為原點,
OA
,
OB
為x,y軸建立平面直角坐標系,設(shè)C坐標為(u,v)
∴3(1,0)+4(0,1)+5(u,v)=0.
u=-
3
5
,v=-
4
5

S=S△oab+S△obc+S△oac=
6
5

故答案為:
6
5
點評:本題主要考查向量的數(shù)量積運算和三角形的面積公式.三角函數(shù)和向量的綜合題是高考的重點,每年必考,要給予重視.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC內(nèi)接于以O(shè)為圓心,1為半徑的圓,且3
OA
+4
OB
+5
OC
=
0

(1)求數(shù)量積,
OA
OB
,
OB
OC
,
OC
OA

(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC內(nèi)接于以O(shè)為圓心,1為半徑的圓,且3
OA
+4
OB
+5
OC
=
0
,則
OC
AB
=
-
1
5
-
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC內(nèi)接于以O(shè)為圓心,以1為半徑的圓,且3
OA
+4
OB
+5
OC
=
O
,
(Ⅰ)求數(shù)量積
OA
OB

(Ⅱ)求△ABC面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省吉安市安福中學(xué)高三(上)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知△ABC內(nèi)接于以O(shè)為圓心,以1為半徑的圓,且,
(Ⅰ)求數(shù)量積
(Ⅱ)求△ABC面積.

查看答案和解析>>

同步練習(xí)冊答案