函數(shù)f(x)的定義域為D,若滿足①f(x)在D內(nèi)是單調(diào)函數(shù),②存在[m,n]⊆D,使f(x)在[m,n]上的值域為數(shù)學(xué)公式,那么就稱y=f(x)為“好函數(shù)”.現(xiàn)有f(x)=loga(ax+k),(a>0,a≠1)是“好函數(shù)”,則k的取值范圍是


  1. A.
    (0,+∞)
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:由題意可知f(x)在D內(nèi)是單調(diào)增函數(shù),才為“好函數(shù)”,從而可構(gòu)造函數(shù),轉(zhuǎn)化為求有兩異正根,k的范圍可求.
解答:因為函數(shù)f(x)=loga(ax+k),(a>0,a≠1)在其定義域內(nèi)為增函數(shù),則若函數(shù)y=f(x)為“好函數(shù)”,
方程必有兩個不同實數(shù)根,
,
∴方程t2-t+k=0有兩個不同的正數(shù)根,
故選C.
點評:本題考查函數(shù)的值域,難點在于構(gòu)造函數(shù),轉(zhuǎn)化為兩函數(shù)有不同二交點,利用方程解決,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為{x|x≠0},且滿足對于定義域內(nèi)任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判斷f(x)的奇偶性并證明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函數(shù),解關(guān)于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的定義域是[0,1),則F(x)=f[log 
12
(3-x)
]的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關(guān)于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的定義域為(-1,1),它在定義域內(nèi)既是奇函數(shù)又是增函數(shù),且f(a-3)+f(4-2a)<0,則實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的定義域為[-1,2],則函數(shù)
f(x+2)
x
的定義域為( 。
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步練習(xí)冊答案