【題目】己知是各項(xiàng)都為正數(shù)的數(shù)列,其前n項(xiàng)和為,且.
(1)求證:為等差數(shù)列;
(2)設(shè),求的前n項(xiàng)和;
(3)求集合.
【答案】(1)證明見解析;(2)(3)
【解析】
(1)由消掉,再根據(jù)等差數(shù)列的定義即可證明;
(2)由(1)得,則,由此可求得(),則,分奇偶數(shù)即可求出;
(3)由得,設(shè),則,則,由此可得當(dāng)時(shí),,記,則,,得,記,鄰項(xiàng)法可得數(shù)列單調(diào)遞減,可得n≥3時(shí),恒成立,進(jìn)而可求出答案.
解:(1)∵,∴,
當(dāng)n≥2,時(shí),,
即(n≥2,),
又n=1時(shí),,得(舍負(fù)),
∴是以1為首項(xiàng),1為公差的等差數(shù)列;
(2)由(1)知,,
又是各項(xiàng)都為正數(shù),,∴,
當(dāng)n≥2,時(shí),,
又,∴(),
于是,
當(dāng)n為奇數(shù)時(shí),
,
當(dāng)n為偶數(shù)時(shí),
,
∴;
(3)由得,即,
設(shè),則,
∴,
由,,
∴,則,
當(dāng)時(shí),顯然不成立;
當(dāng)時(shí),,則,
記,則,,得,
記,則恒成立,
故數(shù)列單調(diào)遞減,
又,,,則n≥3時(shí),恒成立,
從而方程的解為t=1,p=2或t=2,p=1,
∴滿足條件的m,p存在,m=4,p=1或m=4,p=2,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市208年抽樣100戶居民的月均用電量(單位:千瓦時(shí)),以,,,,,,分組,得到如下頻率分布表:
分組 | 頻數(shù) | 頻率 |
0.04 | ||
19 | ||
0.22 | ||
25 | 0.25 | |
15 | 0.15 | |
10 | ||
5 | 0.05 |
(1)求表中的值,并估計(jì)2018年該市居民月均用電量的中位數(shù);
(2)該城市最近十年的居民月均用電量逐年上升,以當(dāng)年居民月均用電量的中位數(shù)(單位:千瓦時(shí))作為統(tǒng)計(jì)數(shù)據(jù),下圖是部分?jǐn)?shù)據(jù)的折線圖.
由折線圖看出,可用線性回歸模型擬合與年份的關(guān)系.
①為簡(jiǎn)化運(yùn)算,對(duì)以上數(shù)據(jù)進(jìn)行預(yù)處理,令,,請(qǐng)你在答題卡上完成數(shù)據(jù)預(yù)處理表;
②建立關(guān)于的線性回歸方程,預(yù)測(cè)2020年該市居民月均用電量的中位數(shù).
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年第十三屆女排世界杯共12支參賽球隊(duì),比賽賽制釆取單循環(huán)方式,即每支球隊(duì)進(jìn)行11場(chǎng)比賽,最后靠積分選出最后冠軍.積分規(guī)則如下(比賽采取5局3勝制):比賽中以3—0或3—1取勝的球隊(duì)積3分,負(fù)隊(duì)積0分;而在比賽中以3—2取勝的球隊(duì)積2分,負(fù)隊(duì)積1分.9輪過后,積分榜上的前2名分別為中國(guó)隊(duì)和美國(guó)隊(duì),中國(guó)隊(duì)積26分,美國(guó)隊(duì)積22分.第10輪中國(guó)隊(duì)對(duì)抗塞爾維亞隊(duì),設(shè)每局比賽中國(guó)隊(duì)取勝的概率為.
(1)第10輪比賽中,記中國(guó)隊(duì)3—1取勝的概率為,求的最大值點(diǎn).
(2)以(1)中的作為的值.
(i)在第10輪比賽中,中國(guó)隊(duì)所得積分為,求的分布列;
(ⅱ)已知第10輪美國(guó)隊(duì)積3分,判斷中國(guó)隊(duì)能否提前一輪奪得冠軍(第10輪過后,無論最后一輪即第11輪結(jié)果如何,中國(guó)隊(duì)積分最多)?若能,求出相應(yīng)的概率;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】體溫是人體健康狀況的直接反應(yīng),一般認(rèn)為成年人腋下溫度T(單位:)平均在之間即為正常體溫,超過即為發(fā)熱.發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類型:低熱:;高熱:;超高熱(有生命危險(xiǎn)):.某位患者因患肺炎發(fā)熱,于12日至26日住院治療.醫(yī)生根據(jù)病情變化,從14日開始,以3天為一個(gè)療程,分別用三種不同的抗生素為該患者進(jìn)行消炎退熱.住院期間,患者每天上午8:00服藥,護(hù)士每天下午16:00為患者測(cè)量腋下體溫記錄如下:
抗生素使用情況 | 沒有使用 | 使用“抗生素A”療 | 使用“抗生素B”治療 | |||||
日期 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 |
體溫() | 38.7 | 39.4 | 39.7 | 40.1 | 39.9 | 39.2 | 38.9 | 39.0 |
抗生素使用情況 | 使用“抗生素C”治療 | 沒有使用 | |||||
日期 | 20日 | 21日 | 22日 | 23日 | 24日 | 25日 | 26日 |
體溫() | 38.4 | 38.0 | 37.6 | 37.1 | 36.8 | 36.6 | 36.3 |
(I)請(qǐng)你計(jì)算住院期間該患者體溫不低于的各天體溫平均值;
(II)在19日—23日期間,醫(yī)生會(huì)隨機(jī)選取3天在測(cè)量體溫的同時(shí)為該患者進(jìn)行某一特殊項(xiàng)目“a項(xiàng)目”的檢查,記X為高熱體溫下做“a項(xiàng)目”檢查的天數(shù),試求X的分布列與數(shù)學(xué)期望;
(III)抗生素治療一般在服藥后2-8個(gè)小時(shí)就能出現(xiàn)血液濃度的高峰,開始?xì)缂?xì)菌,達(dá)到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨(dú)立,請(qǐng)依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩廠均生產(chǎn)某種零件.根據(jù)長(zhǎng)期檢測(cè)結(jié)果:甲、乙兩廠生產(chǎn)的零件質(zhì)量(單位:)均服從正態(tài)分布,在出廠檢測(cè)處,直接將質(zhì)量在之外的零件作為廢品處理,不予出廠;其它的準(zhǔn)予出廠,并稱為正品.
(1)出廠前,從甲廠生產(chǎn)的該種零件中抽取10件進(jìn)行檢查,求至少有1片是廢品的概率;
(2)若規(guī)定該零件的“質(zhì)量誤差”計(jì)算方式為:該零件的質(zhì)量為,則“質(zhì)量誤差”.按標(biāo)準(zhǔn),其中“優(yōu)等”、“一級(jí)”、“合格”零件的“質(zhì)量誤差”范圍分別是,、(正品零件中沒有“質(zhì)量誤差”大于的零件),每件價(jià)格分別為75元、65元、50元.現(xiàn)分別從甲、乙兩廠生產(chǎn)的正品零件中隨機(jī)抽取100件,相應(yīng)的“質(zhì)量誤差”組成的樣本數(shù)據(jù)如下表(用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率):
質(zhì)量誤差 | |||||||
甲廠頻數(shù) | 10 | 30 | 30 | 5 | 10 | 5 | 10 |
乙廠頻數(shù) | 25 | 30 | 25 | 5 | 10 | 5 | 0 |
(。┯浖讖S該種規(guī)格的2件正品零件售出的金額為(元),求的分布列及數(shù)學(xué)期望;
(ⅱ)由上表可知,乙廠生產(chǎn)的該規(guī)格的正品零件只有“優(yōu)等”、“一級(jí)”兩種,求5件該規(guī)格零件售出的金額不少于360元的概率.
附:若隨機(jī)變量.則;,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn),分別是曲線,上兩動(dòng)點(diǎn)且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,求數(shù)列{bn}的前n項(xiàng)和為Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是上的奇函數(shù),其中,則下 列關(guān)于函數(shù)的描述中,其中正確的是( )
①將函數(shù)的圖象向右平移個(gè)單位可以得到函數(shù)的圖象;
②函數(shù)圖象的一條對(duì)稱軸方程為;
③當(dāng)時(shí),函數(shù)的最小值為;
④函數(shù)在上單調(diào)遞增.
A.①③B.③④C.②③D.②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com