【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2a2n=2an+1.

(1)求數(shù)列{an}的通項公式;

(2)設(shè)數(shù)列{bn}的前n項和為Tn,且,令cnb2n(nN*),求數(shù)列{cn}的前n項和Rn

【答案】(1) an=2n-1,nN*;(2)

【解析】試題分析:(1)利用等差數(shù)列的通項公式和求和公式,利用基本量法解出,得到通項公式;(2)利用cnb2n解得,利用錯位相減法求出。

試題解析:

(1)設(shè)等差數(shù)列{an}的首項為a1,公差為d

S4=4S2a2n=2an+1,得

解得a1=1,d=2.

因此an=2n-1,n∈N*

(2)由題意知,

所以n≥2時,

,nN*

所以

,

兩式相減得

整理得

所以數(shù)列{cn}的前n項和

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中, , 邊上的高,沿折起,使

(Ⅰ)證明:平面平面;

(Ⅱ)的中點,求與底面所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓 的離心率,且橢圓上一點到點的距離的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè) 為拋物線 上一動點,過點作拋物線的切線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知一個圓過直線與圓的兩個交點,且面積最小,求此圓的方程;

(2)拋物線的頂點在原點,以橢圓的右焦點為焦點,過點的直線與拋物線有且僅有一個公共點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點為A,右焦點為F,過點F的直線交橢圓于BC兩點.

(1)求該橢圓的離心率;

(2)設(shè)直線ABAC分別與直線x=4交于點M,N,問:x軸上是否存在定點P使得MPNP?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】莫數(shù)學建模興趣小組測量某移動信號塔的高度(單位: ),如圖所示,垂直放置的標桿的高度,仰角, .

(Ⅰ)該小組已經(jīng)測得一組的值, , ,請推測的值;

(Ⅱ)該小組對測得的多組數(shù)據(jù)分析后,發(fā)現(xiàn)適當調(diào)節(jié)標桿到信號塔的距離(單位: ),使得較大時,可以提高信號塔測量的精確度,若信號塔高度為,試問為多大時, 最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機械廠今年進行了五次技能考核,其中甲、乙兩名技術(shù)骨干得分的平均分相等,成績統(tǒng)計情況如莖葉圖所示(其中09的某個整數(shù))

1)若該廠決定從甲乙兩人中選派一人去參加技能培訓,從成績穩(wěn)定性角度考慮,你認為誰去比較合適?

2)若從甲的成績中任取兩次成績作進一步分析,在抽取的兩次成績中,求至少有一次成績在(90100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)= 畫出函數(shù)g(x)圖象;
(3)求函數(shù)g(x)在[﹣3,1]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= + 的定義域為(
A.[﹣2,0)∪(0,2]
B.(﹣1,0)∪(0,2]
C.[﹣2,2]
D.(﹣1,2]

查看答案和解析>>

同步練習冊答案