已知橢圓:的離心率為,右焦點為,右頂點在圓:上.
(Ⅰ)求橢圓和圓的方程;
(Ⅱ)已知過點的直線與橢圓交于另一點,與圓交于另一點.請判斷是否存在斜率不為0的直線,使點恰好為線段的中點,若存在,求出直線的方程;若不存在,說明理由.
(Ⅰ),;(Ⅱ)不存在
解析試題分析:(Ⅰ)由圓方程可知圓心為,即,又因為離心率為,可得,根據(jù)橢圓中關(guān)系式,可求。橢圓方程即可求出。因為,則右頂點為,將其代入圓的方程可求半徑。(Ⅱ)設(shè)出直線方程,然后和橢圓方程聯(lián)立,消掉y(或x)得到關(guān)于x的一元二次方程。再根據(jù)韋達定理得出根與系數(shù)的關(guān)系。因為是其中一個交點,所以方程的一個根為2。用中點坐標公式求點的坐標,再將其代入圓方程。解出的值。若則說明存在滿足條件的直線可求出其方程,若,則說明不存在滿足條件的直線。法二:假設(shè)存在,由已知可得,因為點為線段的中點,所以,因為點在橢圓上可推導得,與矛盾,故假設(shè)不成立。
試題解析:(Ⅰ)由題意可得, 1分
又由題意可得,
所以, 2分
所以, 3分
所以橢圓的方程為. 4分
所以橢圓的右頂點, 5分
代入圓的方程,可得,
所以圓的方程為. 6分
(Ⅱ)法1:
假設(shè)存在直線:滿足條件, 7分
由得 8分
設(shè),則, 9分
可得中點, 11分
由點在圓上可得
化簡整理得 13分
又因為
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的左、右焦點分別為,離心率為,P是橢圓上一點,且面積的最大值等于2.
(1)求橢圓的方程;
(2)過點M(0,2)作直線與直線垂直,試判斷直線與橢圓的位置關(guān)系5
(3)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是拋物線上的兩個點,點的坐標為,直線的斜率為.設(shè)拋物線的焦點在直線的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)C為W上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:的離心率為,長軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交橢圓C于A、B兩點,試問:在y軸正半軸上是否存在一個定點M滿足,若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓與雙曲線有公共的焦點,過橢圓E的右頂點作任意直線l,設(shè)直線l交拋物線于M、N兩點,且.
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點,點P關(guān)于原點O的對稱點為A、關(guān)于x軸的對稱點為Q,線段PQ與x軸相交于點C,點D為CQ的中點,若直線AD與橢圓E的另一個交點為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
給定橢圓C:,若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為.
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點A,B,點Q滿足且=0,其中N為橢圓的下頂點,求直線在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點,,動點G滿足.
(Ⅰ)求動點G的軌跡的方程;
(Ⅱ)已知過點且與軸不垂直的直線l交(Ⅰ)中的軌跡于P,Q兩點.在線段上是否存在點,使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求實數(shù)m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓及定點,點是圓上的動點,點在上,且滿足,點的軌跡為曲線。
(1)求曲線的方程;
(2)若點關(guān)于直線的對稱點在曲線上,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知、分別是橢圓的左、右焦點,右焦點到上頂點的距離為2,若.
(Ⅰ)求此橢圓的方程;
(Ⅱ)點是橢圓的右頂點,直線與橢圓交于、兩點(在第一象限內(nèi)),又、是此橢圓上兩點,并且滿足,求證:向量與共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com