有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面為等可能性事件,棋盤(pán)上標(biāo)有第0站,第1站,第2站,…,第100站,一枚棋子開(kāi)始在第0站,棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若擲出正面,棋向前跳一站(從k到k+1),若擲出反面,棋向前跳兩站(從k到k+2),直到棋子跳到第99站(勝利大本營(yíng))或跳到第100站(失敗集中營(yíng))時(shí),該游戲結(jié)束.設(shè)棋子跳到第n站的概率為Pn

(1)求P0、P1、P2的值;

(2)求證:Pn-Pn-1=-(Pn-1-Pn-2),其中n∈N,2≤n≤99.

答案:
解析:

  解:(1)棋子開(kāi)始在第0站為必然事件,∴P0=1.

  第一次擲硬幣出現(xiàn)正面,棋子跳到第1站,其概率為,∴P1

  棋子跳到第2站應(yīng)從如下兩方面考慮:

 、偾皟纱螖S硬幣都出現(xiàn)正面,其概率為;②第一次擲硬幣出現(xiàn)反面,其概率為

  ∴P2

  (2)證明:棋子跳到第n(2≤n≤99)站的情況是下列兩種,而且也只有兩種:

  ①棋子先到第n-2站,又?jǐn)S出反面,其概率為Pn-2

 、谄遄酉鹊降趎-1站,又?jǐn)S出正面,其概率為Pn-1,

  ∴PnPn-2Pn-1

  ∴Pn-Pn-1=-(Pn-1-Pn-2).

  思路分析:抓住問(wèn)題的特征,硬幣出現(xiàn)正面或反面,棋子將會(huì)跳一步或兩步,即當(dāng)2≤n≤99時(shí),每一站上棋子都有兩個(gè)來(lái)源.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面為等可能性事件,棋盤(pán)上標(biāo)有第0站,第1站,第2站,…,第100站,一枚棋子開(kāi)始在第0站,棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若擲出正面,棋向前跳一站(從k到k+1),若擲出反面,棋向前跳兩站(從k到k+2),直到棋子跳到第99站(勝利大本營(yíng))或跳到第100站(失敗集中營(yíng))時(shí),該游戲結(jié)束.設(shè)棋子跳到第n站概率為Pn
(1)求P0,P1,P2的值;
(2)求證:Pn-Pn-1=-
12
(Pn-1-Pn-2),其中n∈N,2≤n≤99;
(3)求P99及P100的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面的概率都是
12
,棋盤(pán)上標(biāo)有第0站,第1站,…,第100站,一枚棋子開(kāi)始在第0站,棋手每擲一次硬幣棋子向前跳動(dòng)一次,若擲出正面,棋子向前跳一站(從n到n+1),若擲出反面,棋子向前跳兩站(從n到n+2),直到棋子跳到第99站(勝利大本營(yíng)),或跳到第100站(失敗集中營(yíng))時(shí)該游戲結(jié)束,設(shè)棋子跳到第n站的概率為P(n);
(1)求P(1),P(2);
(2)求證:數(shù)列{P(n)-P(n-1)}是等比數(shù)列(n∈N,n≤99);
(3)求P(99)及P(100)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面的概率都是數(shù)學(xué)公式,棋盤(pán)上標(biāo)有第0站,第1站,…,第100站,一枚棋子開(kāi)始在第0站,棋手每擲一次硬幣棋子向前跳動(dòng)一次,若擲出正面,棋子向前跳一站(從n到n+1),若擲出反面,棋子向前跳兩站(從n到n+2),直到棋子跳到第99站(勝利大本營(yíng)),或跳到第100站(失敗集中營(yíng))時(shí)該游戲結(jié)束,設(shè)棋子跳到第n站的概率為P(n);
(1)求P(1),P(2);
(2)求證:數(shù)列{P(n)-P(n-1)}是等比數(shù)列(n∈N,n≤99);
(3)求P(99)及P(100)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面為等可能性事件,棋盤(pán)上標(biāo)有第0站,第1站,第2站,…,第100站,一枚棋子開(kāi)始在第0站,棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若擲出正面,棋向前跳一站(從k到k+1),若擲出反面,棋向前跳兩站(從k到k+2),直到棋子跳到第99站(勝利大本營(yíng))或跳到第100站(失敗集中營(yíng))時(shí),該游戲結(jié)束.設(shè)棋子跳到第n站概率為Pn
(1)求P0,P1,P2的值;
(2)求證:Pn-Pn-1=-
1
2
(Pn-1-Pn-2),其中n∈N,2≤n≤99;
(3)求P99及P100的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):11.2 互斥事件有一個(gè)發(fā)生的概率(解析版) 題型:解答題

有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面為等可能性事件,棋盤(pán)上標(biāo)有第0站,第1站,第2站,…,第100站,一枚棋子開(kāi)始在第0站,棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若擲出正面,棋向前跳一站(從k到k+1),若擲出反面,棋向前跳兩站(從k到k+2),直到棋子跳到第99站(勝利大本營(yíng))或跳到第100站(失敗集中營(yíng))時(shí),該游戲結(jié)束.設(shè)棋子跳到第n站概率為Pn
(1)求P,P1,P2的值;
(2)求證:Pn-Pn-1=-(Pn-1-Pn-2),其中n∈N,2≤n≤99;
(3)求P99及P100的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案