湛江為建設(shè)國家衛(wèi)生城市,現(xiàn)計劃在相距20 km的赤坎區(qū)(記為A)霞山區(qū)(記為B)兩城區(qū)外以AB為直徑的半圓弧上選擇一點C建造垃圾處理廠,其對市區(qū)的影響度與所選地
點到市區(qū)的距離有關(guān),對赤坎區(qū)和霞山區(qū)的總影響度為兩市區(qū)的影響度之和,記C點到赤坎區(qū)的距離為x km,建在C處的垃圾處理廠對兩市區(qū)的總影響度為y.統(tǒng)計調(diào)查表明:垃圾處理廠對赤坎區(qū)的影響度與所選地點到赤坎區(qū)的距離的平方成反比,比例系數(shù)為4;對霞山區(qū)的影響度與所選地點到霞山區(qū)的距離的平方成反比,比例系數(shù)為k.當(dāng)垃圾處理廠建在的中點時,對兩市區(qū)的總影響度為0.065.
(1)將y表示成x的函數(shù);
(2)討論(1)中函數(shù)的單調(diào)性,并判斷上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最?若存在,求出該點到赤坎區(qū)的距離;若不存在,說明理由.
(1);(2).
解析試題分析:(1)根據(jù)條件中描述:垃圾處理廠對赤坎區(qū)的影響度與所選地點到赤坎區(qū)的距離的平方成反比,比例系數(shù)為4;對霞山區(qū)的影響度與所選地點到霞山區(qū)的距離的平方成反比,比例系數(shù)為k,而y表示建在C處的垃圾處理廠對兩市區(qū)的總影響度為y,因此可設(shè),根據(jù)題意當(dāng)垃圾處理廠建在的中點時,對兩市區(qū)的總影響度為0.065可求得k的值;(2)由(1),,可求得,進(jìn)而可以得到y(tǒng)的在(0,20)上的單調(diào)性,從而求得y的最小值.
(1)如圖,由題意知AC⊥BC,AC=x km,則,
2分
由題意知,當(dāng)垃圾處理廠建在的中點時,對城A和城B的總影響度為0.065,即當(dāng)時,y=0.065,代入得k=9.所以y表示成x的函數(shù)為. 6分;
(2)由于,∴ 8分
令得或(舍去), 9分
當(dāng)時,,即,此時函數(shù)為單調(diào)減函數(shù);當(dāng)時,,即,此時函數(shù)為單調(diào)增函數(shù) 12分
所以當(dāng)時,即當(dāng)C點到赤坎區(qū)的距離為時,函數(shù)有最小值 14分.
考點:1、具體情境下函數(shù)解析式的求解;2、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù).
⑴若不等式對任意恒成立,求實數(shù)的最值范圍;
⑵若,且函數(shù)的定義域和值域均為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知都是實數(shù),且.
(1)求不等式的解集;
(2)若對滿足條件的所有實數(shù)都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某造紙廠擬建一座底面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/平方米,水池所有墻的厚度忽略不計.
(1)試設(shè)計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(2)若由于地形限制,該池的長和寬都不能超過16米,試設(shè)計污水處理池的長和寬,使總造價最低,并求出最低總造價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項和,數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,長方形物體E在雨中沿面P(面積為S)的垂直方向作勻速移動,速度為,雨速沿E移動方向的分速度為。E移動時單位時間內(nèi)的淋雨量包括兩部分:(1)P或P的平行面(只有一個面淋雨)的淋雨量,假設(shè)其值與×S成正比,比例系數(shù)為;(2)其它面的淋雨量之和,其值為,記為E移動過程中的總淋雨量,當(dāng)移動距離d=100,面積S=時。
(1)寫出的表達(dá)式
(2)設(shè)0<v≤10,0<c≤5,試根據(jù)c的不同取值范圍,確定移動速度,使總淋雨量最少。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
養(yǎng)路處建造圓錐形倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為,高,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大(高不變);二是高度增加(底面直徑不變)。
(1)分別計算按這兩種方案所建的倉庫的體積;
(2)分別計算按這兩種方案所建的倉庫的表面積(地面無需用材料);
(3)哪個方案更經(jīng)濟些?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某單位決定對本單位職工實行年醫(yī)療費用報銷制度,擬制定年醫(yī)療總費用在2萬元至10萬元(包括2萬元和10萬元)的報銷方案,該方案要求同時具備下列三個條件:①報銷的醫(yī)療費用y(萬元)隨醫(yī)療總費用x(萬元)增加而增加;②報銷的醫(yī)療費用不得低于醫(yī)療總費用的50%;③報銷的醫(yī)療費用不得超過8萬元.
(1)請你分析該單位能否采用函數(shù)模型y=0.05(x2+4x+8)作為報銷方案;
(2)若該單位決定采用函數(shù)模型y=x-2lnx+a(a為常數(shù))作為報銷方案,請你確定整數(shù)a的值.(參考數(shù)據(jù):ln2≈0.69,ln10≈2.3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com