等差數(shù)列{an}首項為a1=2,公差不為0,且a1、a3、a7成等比數(shù)列,數(shù)列{bn}的前n項和為Tn,且Tn=an2
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)若cn=2n-1(bn-1),求數(shù)列{cn}的前n項和Sn
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用等差數(shù)列通項公式和等比數(shù)列性質(zhì),求出公差,由此能求出an=n+1,再由數(shù)列{bn}的前n項和為Tn,且Tn=an2=(n+1)2,能求出bn=
4,n=1
2n+1,n≥2

(2)由cn=2n-1(bn-1),能求出S1=3;n≥2時,cn=2n-1(bn-1)=n•2n,利用錯位相減法能求出數(shù)列{cn}的前n項和Sn
解答: 解:(1)∵等差數(shù)列{an}首項為a1=2,公差不為0,且a1、a3、a7成等比數(shù)列,
∴(2+2d)2=2(2+6d),
解得d=1,或d=0(舍),
∴an=2+(n-1)×1=n+1,
∵數(shù)列{bn}的前n項和為Tn,且Tn=an2=(n+1)2,
b1=(1+1)2=4,
bn=Tn-Tn-1=(n+1)2-n2=2n+1,
n=1時,2n+1=3≠b1
bn=
4,n=1
2n+1,n≥2

(2)∵cn=2n-1(bn-1),
∴c1=20•(4-1)=3,S1=3;
n≥2時,cn=2n-1(bn-1)=n•2n,
Sn=3+2•22+3•23+…+n•2n,①
2Sn=6+2•23+3•24+…+n•2n+1,②
①-②,得:-Sn=-3+8+23+24+…+2n-n•2n+1
=5+
8(1-2n-2)
1-2
-n•2n+1
=-(n-1)•2n+1-3,
Sn=(n-1)•2n+1+3
n=1時也成立,
Sn=(n-1)•2n+1+3
點評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,解題時要認(rèn)真審題,注意錯位相減法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ADF-BCH中,側(cè)面ABCD是菱形,F(xiàn)A=FD,∠BAD=60°,E是AD的中點,點Q在線段FC上.
(Ⅰ)求證:AD⊥平面EFB;
(Ⅱ)若Q是FC的中點,求證:FA∥平面BDQ
(Ⅲ)若VF-BCDE=2VQ-ABCD,試求
CF
CQ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)一名數(shù)學(xué)老師對全班50名學(xué)生某次考試成績分男女生進(jìn)行了統(tǒng)計,其中120分(含120分)以上為優(yōu)秀,繪制了如下的兩個頻率分布直方圖:

(1)根據(jù)以上兩個直方圖完成下面的2×2列聯(lián)表:
成績性別優(yōu)秀不優(yōu)秀總計
男生
女生
總計
(2)根據(jù)(1)中表格的數(shù)據(jù)計算,你有多大把握認(rèn)為學(xué)生的數(shù)學(xué)成績與性別之間有關(guān)系?
(注:
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
(3)若從成績在[130,140]的學(xué)生中任取2人,求取到的2人中至少有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC=A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中點,△A1MC1是等腰三角形,D為CC1的中點,E為BC上一點且
CE
EB
=
1
3

(Ⅰ)證明:DE∥平面A1MC1;
(Ⅱ)若AB=2,求三棱錐E-A1MC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax
x2+b
在x=-1處取得極值-2.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)求函數(shù)f(x)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項均不為零的數(shù)列{an}的前n項和為Sn,且an+3SnSn-1=0(n≥2),a1=
1
3

(1)求數(shù)列{an}的通項公式an;
(2)若bn=
1 ,(n=1)
1
3(1-n)an
,(n≥2)
,設(shè)Tn=
1
b1+n
+
1
b2+n
+…+
1
bn+n
,若Tn>m對n≥2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=2,a2=6,且對一切n∈N*,有an+2=2an+1-an+2
(1)證明:數(shù)列{an+1-an}是等差數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)Tn=
1
3a1
+
1
4a2
+
1
5a3
+…+
1
(n+2)an
,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的兩根,數(shù)列{bn}的前n項的和為Sn,且Sn=1-
1
2
bn
(1)求數(shù)列{an},{bn}的通項公式;  
(2)記cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD的兩條對角線交于點E,設(shè)
AB
=
e1
,
AD
=
e2
,用
e1
,
e2
表示
ED
的表達(dá)式為
 

查看答案和解析>>

同步練習(xí)冊答案