【題目】某中學(xué)為了了解全校學(xué)生的上網(wǎng)情況,在全校采用隨機(jī)抽樣的方法抽取了40名學(xué)生其中男女生人數(shù)恰好各占一半進(jìn)行問(wèn)卷調(diào)查,并進(jìn)行了統(tǒng)計(jì),按男女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為5組:,,,,得到如圖所示的頻率分布直方圖:

寫(xiě)出的值;

在抽取的40名學(xué)生中,從月上網(wǎng)次數(shù)不少于20次的學(xué)生中隨機(jī)抽取3人 ,并用表示其中男生的人數(shù),求的分布列和數(shù)學(xué)期望.

【答案】10.05;2詳見(jiàn)解析.

【解析】

試題分析:1直接由頻率分布直方圖即可計(jì)算出的值即可;2首先求出在抽取的女生中,月上網(wǎng)次數(shù)不少于20次的學(xué)生頻率和學(xué)生人數(shù)和在抽取的男生中,月上網(wǎng)次數(shù)不少于20次的學(xué)生頻率和學(xué)生人數(shù),然后確定隨機(jī)變量的所有可能取值,再利用古典概型的計(jì)算公式分別求出各自的概率并列出其分布列,最后計(jì)算出其數(shù)學(xué)期望即可.

試題解析.

在抽取的女生中,月上網(wǎng)次數(shù)不少于20次的學(xué)生頻率為0.02×5=0.1,學(xué)生人數(shù)為0.1×20=2人.同理,在抽取的男生中,月上網(wǎng)次數(shù)不少于20次的學(xué)生人數(shù)為0.03×5×20=3人.

的可能取值為1,2,3.則,.

所以的分布列為:

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),函數(shù).

1當(dāng)時(shí),求的最小值;

2當(dāng)時(shí),判斷的單調(diào)性,并說(shuō)明理由;

3求實(shí)數(shù)的范圍,使得對(duì)于區(qū)間上的任意三個(gè)實(shí)數(shù),都存在以為邊長(zhǎng)的三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1是在定義域內(nèi)的增函數(shù),求的取值范圍;

2若函數(shù)其中的導(dǎo)函數(shù)存在三個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤(rùn)50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了160盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).

1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量和中位數(shù);

2)將表示為的函數(shù);

3)根據(jù)直方圖估計(jì)利潤(rùn)不少于4800元的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的離心率,且橢圓經(jīng)過(guò)點(diǎn)直線與橢圓交于不同的兩點(diǎn)

(1)求橢圓的方程;

(2)若的面積為1(為坐標(biāo)原點(diǎn)),求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),該函數(shù)圖像過(guò)點(diǎn),與點(diǎn)相鄰函數(shù)圖像上的一個(gè)最高點(diǎn)為

(1)求該函數(shù)的解析式;

(2)求函數(shù)在區(qū)間上的最值及其對(duì)應(yīng)的自變量的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)有獎(jiǎng)銷售中,購(gòu)滿100元商品得1張獎(jiǎng)券,多購(gòu)多得,1000張獎(jiǎng)券為一個(gè)開(kāi)獎(jiǎng)單位,設(shè)特等獎(jiǎng)1個(gè),一等獎(jiǎng)10個(gè),二等獎(jiǎng)50個(gè).設(shè)1張獎(jiǎng)券中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)的事件分別為A、B、C,求:

1PA,PB,PC

21張獎(jiǎng)券的中獎(jiǎng)概率;

31張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是等比數(shù)列, 為數(shù)列的前項(xiàng)和,且

(1)求數(shù)列的通項(xiàng)公式.

(2)設(shè)為遞增數(shù)列.若求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò)1,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案