【題目】設(shè)函數(shù)y= 的定義域為M,那么(
A.{x|x>﹣1且x≠0}
B.{x|x>﹣1}
C.M={x|x<﹣1或x>0}
D.M={x|x<﹣1或﹣1<x<0或x>0}

【答案】B
【解析】解:根據(jù)題意,得;
1+x>0,
解得x>﹣1;
∴函數(shù)的定義域M為{x|x>1}.
故選:B.
【考點精析】本題主要考查了函數(shù)的定義域及其求法的相關(guān)知識點,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中邊長為1,P、Q分別為BC、CD上的點,△CPQ周長為2.
(1)求PQ的最小值;
(2)試探究求∠PAQ是否為定值,若是給出證明;不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2ax﹣ +lnx,若f(x)在x=1,x= 處取得極值, (Ⅰ)求a、b的值;
(Ⅱ)求f(x)在[ ,2]上的單調(diào)區(qū)間
(Ⅲ)在[ ,2]存在x0 , 使得不等式f(x0)﹣c≤0成立,求c的最小值.
(參考數(shù)據(jù):e2≈7.389,e3≈20.08)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:關(guān)于x的不等式ax>1(a>0,a≠1)的解集是{x|x<0},命題q:函數(shù)y=lg(ax2-x+a)的定義域為R,如果p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答題
(1)求不等式a2x1>ax+2(a>0,且a≠1)中x的取值范圍(用集合表示).
(2)已知f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)= +1,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】9件產(chǎn)品中,有4件一等品,3件二等品,2件三等品,現(xiàn)在要從中抽出4件產(chǎn)品來檢查,至少有兩件一等品的抽取方法是(
A.C C
B.C +C +C
C.C +C
D.C C +C C +C C

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)、f( )的值;
(2)若滿足f(x)+f(x﹣8)≤2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校擬建一塊周長為400m的操場如圖所示,操場的兩頭是半圓形,中間區(qū)域是矩形,學生做操一般安排在矩形區(qū)域,為了能讓學生的做操區(qū)域盡可能大,試問如何設(shè)計矩形的長和寬?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= 是定義在(﹣∞,+∞)上的奇函數(shù),且f( )=
(1)求實數(shù)a、b,并確定函數(shù)f(x)的解析式;
(2)判斷f(x)在(﹣1,1)上的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案