過拋物線y2=4x的焦點作直線交拋物線于A(x1,y1)B(x2,y2)兩點,若|AB|=12,那么x1+x2等于(  )
分析:由題意,拋物線的焦點坐標(biāo)F(1,0),準線方程為x=-1.根據(jù)拋物線的定義,證出|AF|+|BF|=x1+x2+2,結(jié)合題中數(shù)據(jù)即可求出x1+x2的值.
解答:解:根據(jù)題意,得
拋物線y2=4x的焦點坐標(biāo)F(1,0),準線方程為x=-1
∴由拋物線的定義,得|AF|=x1+1且|BF|=x2+1
因此|AF|+|BF|=x1+x2+2=12,可得x1+x2=10
故選:B
點評:本題給出拋物線的焦點弦的長度,求端點橫坐標(biāo)的和.著重考查了拋物線的定義與標(biāo)準方程的知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

傾斜角為
π
4
的直線過拋物線y2=4x的焦點且與拋物線交于A,B兩點,則|AB|=( 。
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F引兩條互相垂直的直線AB、CD交拋物線于A、B、C、D四點.
(1)求當(dāng)|AB|+|CD|取最小值時直線AB、CD的傾斜角的大小
(2)求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交該拋物線于A,B兩點,O為坐標(biāo)原點.若|AF|=3,則△AOB的面積為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,點O是坐標(biāo)原點,若|AF|=5,則△AOB的面積為( 。
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,A、B兩點在準線l上的射影分別為M.N,則∠MFN=( 。

查看答案和解析>>

同步練習(xí)冊答案