【題目】已知橢圓.

1求橢圓C的離心率;

2設(shè)O為原點(diǎn),若點(diǎn)A在橢圓上,點(diǎn)B在直線x=4上,且,求直線AB截圓所得弦長(zhǎng).

【答案】126.

【解析】

試題分析:1首先解出橢圓的標(biāo)準(zhǔn)形式,再根據(jù),求橢圓的離心率;

2首先設(shè)A,B的坐標(biāo)分別為,根據(jù)點(diǎn)A在橢圓上,以及,得到坐標(biāo)的關(guān)系式,,以及,并且求出直線AB方程,寫出原點(diǎn)到直線的距離,并且代入上面的關(guān)系式,得到原點(diǎn)到直線的距離,最后得到直線截圓的弦長(zhǎng).

試題解析:1由題設(shè)將橢圓化為標(biāo)準(zhǔn)形式可得,

,.

故橢圓C的離心率.

2設(shè)點(diǎn)A,B的坐標(biāo)分別為,4,t,

,

根據(jù)點(diǎn)斜式得出直線AB的方程為:

化簡(jiǎn)得,

原點(diǎn)O到AB的距離,將①②代入可得:

.

在圓中應(yīng)用勾股定理可得

故弦長(zhǎng)為6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)地區(qū)共有5個(gè)鄉(xiāng)鎮(zhèn),共30萬人其人口比例為32523,從這30萬人中抽取一個(gè)300人的樣本,分析某種疾病的發(fā)病率.已知這種疾病與不同的地理位置及水土有關(guān),則應(yīng)采取什么樣的抽樣方法?并寫出具體過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一1班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖.

1求分?jǐn)?shù)在的頻率及全班人數(shù);

2求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高;

3若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于算法的說法,正確的序號(hào)是__________

(1)一個(gè)問題的算法是唯一的;

(2)算法的操作步驟是有限的;

(3)算法的每一步操作必須是明確的,不能有歧義;

(4)算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列三句話按三段論的模式排列順序正確的是(

① 2018能被2整除;②一切偶數(shù)都能被2整除;③ 2018是偶數(shù);

A. ①②③ B. ②①③ C. ②③① D. ③②①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】讀下面的程序

i=1

S=0

DO

INPUT x

S=S+x

i=i+1

LOOP UNTIL i>10

A=S/10

PRINT A

END

該程序的作用是

A. 計(jì)算9個(gè)數(shù)的和 B. 計(jì)算9個(gè)數(shù)的平均數(shù)

C. 計(jì)算10個(gè)數(shù)的和 D. 計(jì)算10個(gè)數(shù)的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程

焦點(diǎn)在軸上,焦距是,離心率;

一個(gè)焦點(diǎn)為的等軸雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅行社為調(diào)查市民喜歡人文景觀景點(diǎn)是否與年齡有關(guān),隨機(jī)抽取了55名市民,得到數(shù)據(jù)如下表:

喜歡

不喜歡

合計(jì)

大于40

20

5

25

20歲至40

10

20

30

合計(jì)

30

25

55

1判斷是否有99.5%的把握認(rèn)為喜歡人文景觀景點(diǎn)與年齡有關(guān)?

2用分層抽樣的方法從喜歡人文景觀景點(diǎn)的市民中隨機(jī)抽取6人作進(jìn)一步調(diào)查,將這6位市民作為一個(gè)樣本,從中任選2人,求恰有1大于40的市民和120歲至40的市民的概率.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面的中點(diǎn).

1)證明:平面;

2)求和平面所成的角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案