【題目】在實數(shù)集中,定義兩個實數(shù)的運算法則△如下:若,則,若,則.

1)請分別計算的值;

2)對于實數(shù),判斷是否恒成立,并說明理由;

3)求函數(shù)的解析式,其中,并求函數(shù)的最值.(符號表示相乘)

【答案】1)9;9(2)不恒成立(3)最大值為2,最小值為-4.

【解析】

1)根據(jù)題干條件,比較大小,代入關(guān)系式計算即可. (2)實數(shù),但是大小關(guān)系不確定, 所以,不能恒等.3)根據(jù)與1的大小關(guān)系對分類討論,討論每一段的最值再最終求最值即可.

解:(1,.

2不一定小于,所以;

,,不一定小于,所以;

所以不恒成立.

3,

當(dāng)時,處取得最大值-1,在取得最小值-4,

當(dāng)時,處取得最大值2,在處取得最小值-1,

所以的最大值為2,最小值為-4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點分別為,,焦距為6.

(1)求橢圓的方程.

(2)過橢圓左頂點的兩條斜率之積為的直線分別與橢圓交于點.試問直線是否過某定點?若過,求出該點的坐標(biāo);若不過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的單調(diào)遞減區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,根據(jù)經(jīng)驗,其次品率與日產(chǎn)量 (萬件)之間滿足關(guān)系, (其中為常數(shù),且,已知每生產(chǎn)1萬件合格的產(chǎn)品以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元(注:次品率=次品數(shù)/生產(chǎn)量, 如表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品).

1)試將生產(chǎn)這種產(chǎn)品每天的盈利額 (萬元)表示為日產(chǎn)量 (萬件)的函數(shù);

2)當(dāng)日產(chǎn)量為多少時,可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐,底面是平行四邊形,底面,,,,分別為的中點,為線段的中點.

1)求證:;

2)求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為常數(shù))

1)求的單調(diào)增區(qū)間;

2)若時,的最大值為,求的值;

3)求取最大值時的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是正方體的平面展開圖,在這個正方體中;

1BMED平行;(2CNBE是異面直線;(3CNBM所成角為60°;(4CNAF垂直. 以上四個命題中,正確命題的序號是( )

A.(1)(2)(3)B.(2)(4)C.(3)(4)D.(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,

1)求證:平面;

2)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在區(qū)間上單調(diào)遞減,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案