【題目】在平面直角坐標系xOy中,將曲線方程,先向左平移2個單位,再向上平移2個單位,得到曲線C.

1)點Mx,y)為曲線C上任意一點,寫出曲線C的參數(shù)方程,并求出的最大值;

2)設直線l的參數(shù)方程為,(t為參數(shù)),又直線l與曲線C的交點為E,F,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段EF的中點且與l垂直的直線的極坐標方程.

【答案】1θ為參數(shù));4;(2

【解析】

1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉(zhuǎn)換,進一步利用三角函數(shù)關(guān)系式的變換和余弦型函數(shù)性質(zhì)的應用求出結(jié)果.

2)利用中點坐標公式的應用和直線垂直的充要條件的應用求出結(jié)果.

解:(1)將曲線方程,先向左平移2個單位,再向上平移2個單位,得到曲線C的方程為

故曲線C的參數(shù)方程為θ為參數(shù));

又點Mxy)為曲線C上任意一點,

所以2cos4cos.

所以的最大值為4

2)由(1)知曲線C的直角坐標方程為

又直線l的參數(shù)方程為,(t為參數(shù)),

所以直線l的普通方程為x+2y40

所以有

解得.

所以線段EF的中點坐標為(),

即線段EF的中點坐標為(2,1),

直線l的斜率為,

則與直線l垂直的直線的斜率為2,

故所求直線的直角坐標方程為y12x2),

2xy30,

xρcosθyρsinθ代入,

得其極坐標方程為cosθρsinθ30.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求的圖象在處的切線方程;

2)若函數(shù)上有兩個零點,求實數(shù)m的取值范圍;

3)若對區(qū)間內(nèi)任意兩個不等的實數(shù),不等式恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學從甲、乙兩個班中各選出7名學生參加數(shù)學競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖所示,其中甲班學生成績的眾數(shù)是83,乙班學生成績的平均數(shù)是86,則的值為( )

A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知分別是橢圓()的左右焦點,點是橢圓上一點,且.若橢圓的內(nèi)接四邊形的邊的延長線交于橢圓外一點,且點的橫坐標為1,記直線的斜率分別為,.

1)求橢圓的標準方程;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)fx)=Asinωx)(A0,ω0,0φπ)的部分圖象如圖所示,又函數(shù).

1)求函數(shù)的單調(diào)減區(qū)間;

2)設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,又,且銳角C滿足,若sinB2sinA,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(其中t為參數(shù)).以坐標原點O為極點,x軸正半軸為極軸建立極坐標系并取相同的單位長度,曲線C2的極坐標方程為.

1)把曲線C1的方程化為普通方程,C2的方程化為直角坐標方程;

2)若曲線C1,C2相交于A,B兩點,AB的中點為P,過點P做曲線C2的垂線交曲線C1E,F兩點,求|PE||PF|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在長方體ABCDA1B1C1D1中,AA12AB2AD4,過AA1作平面α使BDα,且平面α平面A1B1C1D1lMl.下面給出了四個命題:這四個命題中,真命題的個數(shù)為(

lAC;

BMAC;

lAD1所成的角為60°;

④線段BM長度的最小值為.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某小學的期末考試中抽取部分學生的數(shù)學成績,由抽查結(jié)果得到如圖的頻率分布直方圖,分數(shù)落在區(qū)間,,內(nèi)的頻率之比為

1)求這些學生的分數(shù)落在區(qū)間內(nèi)的頻率;

2)(ⅰ)若采用分層抽樣的方法從分數(shù)落在區(qū)間,內(nèi)抽取4人,求從分數(shù)落在區(qū)間,內(nèi)各抽取的人數(shù);

(ⅱ)從上述抽取的4人中再隨機抽取2人,求這2人全部來自于區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與橢圓交于不同的兩點,線段的中點為,且直線與直線的斜率之積為.若直線與直線交于點,與直線交于點,且點為直線上一點.

1)求的軌跡方程;

2)若為橢圓的上頂點,直線軸交點,記表示面積,求的最大值.

查看答案和解析>>

同步練習冊答案