【題目】在平面直角坐標系xOy中,將曲線方程,先向左平移2個單位,再向上平移2個單位,得到曲線C.
(1)點M(x,y)為曲線C上任意一點,寫出曲線C的參數(shù)方程,并求出的最大值;
(2)設直線l的參數(shù)方程為,(t為參數(shù)),又直線l與曲線C的交點為E,F,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段EF的中點且與l垂直的直線的極坐標方程.
【答案】(1)(θ為參數(shù));4;(2)
【解析】
(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉(zhuǎn)換,進一步利用三角函數(shù)關(guān)系式的變換和余弦型函數(shù)性質(zhì)的應用求出結(jié)果.
(2)利用中點坐標公式的應用和直線垂直的充要條件的應用求出結(jié)果.
解:(1)將曲線方程,先向左平移2個單位,再向上平移2個單位,得到曲線C的方程為,
即,
故曲線C的參數(shù)方程為(θ為參數(shù));
又點M(x,y)為曲線C上任意一點,
所以2cos4cos().
所以的最大值為4;
(2)由(1)知曲線C的直角坐標方程為,
又直線l的參數(shù)方程為,(t為參數(shù)),
所以直線l的普通方程為x+2y﹣4=0,
所以有,
解得或.
所以線段EF的中點坐標為(),
即線段EF的中點坐標為(2,1),
直線l的斜率為,
則與直線l垂直的直線的斜率為2,
故所求直線的直角坐標方程為y﹣1=2(x﹣2),
即2x﹣y﹣3=0,
將x=ρcosθ,y=ρsinθ代入,
得其極坐標方程為2ρcosθ﹣ρsinθ﹣3=0.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求的圖象在處的切線方程;
(2)若函數(shù)在上有兩個零點,求實數(shù)m的取值范圍;
(3)若對區(qū)間內(nèi)任意兩個不等的實數(shù),,不等式恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學從甲、乙兩個班中各選出7名學生參加數(shù)學競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖所示,其中甲班學生成績的眾數(shù)是83,乙班學生成績的平均數(shù)是86,則的值為( )
A.7B.8C.9D.10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知分別是橢圓:()的左右焦點,點是橢圓上一點,且.若橢圓的內(nèi)接四邊形的邊的延長線交于橢圓外一點,且點的橫坐標為1,記直線的斜率分別為,.
(1)求橢圓的標準方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,又函數(shù).
(1)求函數(shù)的單調(diào)減區(qū)間;
(2)設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,又,且銳角C滿足,若sinB=2sinA,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(其中t為參數(shù)).以坐標原點O為極點,x軸正半軸為極軸建立極坐標系并取相同的單位長度,曲線C2的極坐標方程為.
(1)把曲線C1的方程化為普通方程,C2的方程化為直角坐標方程;
(2)若曲線C1,C2相交于A,B兩點,AB的中點為P,過點P做曲線C2的垂線交曲線C1于E,F兩點,求|PE||PF|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在長方體ABCD﹣A1B1C1D1中,AA1=2AB=2AD=4,過AA1作平面α使BD⊥α,且平面α∩平面A1B1C1D1=l,M∈l.下面給出了四個命題:這四個命題中,真命題的個數(shù)為( )
①l∥AC;
②BM⊥AC;
③l和AD1所成的角為60°;
④線段BM長度的最小值為.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某小學的期末考試中抽取部分學生的數(shù)學成績,由抽查結(jié)果得到如圖的頻率分布直方圖,分數(shù)落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這些學生的分數(shù)落在區(qū)間內(nèi)的頻率;
(2)(ⅰ)若采用分層抽樣的方法從分數(shù)落在區(qū)間,內(nèi)抽取4人,求從分數(shù)落在區(qū)間,內(nèi)各抽取的人數(shù);
(ⅱ)從上述抽取的4人中再隨機抽取2人,求這2人全部來自于區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與橢圓交于不同的兩點,線段的中點為,且直線與直線的斜率之積為.若直線與直線交于點,與直線交于點,且點為直線上一點.
(1)求的軌跡方程;
(2)若為橢圓的上頂點,直線與軸交點,記表示面積,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com