【題目】如圖,在四棱錐中,,,,

(1)求證:平面平面;

(2)的中點,求證:平面;

(3)與平面所成的角為,求四棱錐的體積.

【答案】(1)見解析;(2)見解析;(3)

【解析】

(1)先證明平面,再證明平面平面.(2)先證明,再證明平面.(3) 建立空間直角坐標系,利用向量法求得,即得a=1,再求四棱錐的體積.

(1)因為,所以,

又因為,所以平面

所以平面平面

(2)取的中點,連接,

因為的中點,所以,

又因為,,

所以

所以四邊形是平行四邊形,

平面,平面

所以平面

(3),連接

因為,所以中點,又因為平面平面,

所以平面

如圖建立空間直角坐標系

.由題意得,,,

所以 , ,

設平面的法向量為,則

,則.所以

因為與平面所成角為,

所以,

解得

所以四棱錐的體積

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)=|x+1|—|x-2|的最大值為a.

(1)求函數(shù)f(x)的值域;

(2)若函數(shù)f(x)的最大值為a;當 p,q,r是正實數(shù),且滿足p+q+r=a時,求證:p2+q2+r23。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)求函數(shù)的單調遞增區(qū)間;

(2)若函數(shù)上有且只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,向量,設函數(shù)的圖象關于直線對稱,其中常數(shù).

1)若,求的值域;

2)將函數(shù)的圖象向左平移個單位,再向下平移1個單位,得到函數(shù)的圖象,用五點法作出函數(shù)在區(qū)間上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的部分圖象如圖,是圖象的一個最低點,圖象與軸的一個交點坐標為,與軸的交點坐標為.

1)求,,的值;

2)關于的方程上有兩個不同的解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學餐飲中心為了了解新生的飲食習慣,在全校一年級學生中進行了抽樣調查,調查結果如下表所示:

喜歡甜品

不喜歡甜品

合計

南方學生

60

20

80

北方學生

10

10

20

合計

70

30

100

根據(jù)表中數(shù)據(jù),問是否有的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;

已知在被調查的北方學生中有5名數(shù)學系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù), ).以坐標原點為極點,以軸正半軸為極軸的極坐標系中,曲線上一點的極坐標為,曲線的極坐標方程為.

(Ⅰ)求曲線的極坐標方程;

(Ⅱ)設點上,點上(異于極點),若四點依次在同一條直線上,且成等比數(shù)列,求 的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的中心在坐標原點,焦點在x軸上,左頂點為A,左焦點為,點在橢圓C上,直線與橢圓C交于E,F兩點,直線AE,AF分別與y軸交于點MN

求橢圓C的方程;

x軸上是否存在點P,使得無論非零實數(shù)k怎樣變化,總有為直角?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線Cρsin2θ2acos θ(a>0),過點P(2,-4)的直線l (t為參數(shù))與曲線C相交于M,N兩點.

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)|PM|,|MN|,|PN|成等比數(shù)列,求實數(shù)a的值.

查看答案和解析>>

同步練習冊答案