已知是雙曲線C:的左焦點(diǎn),是雙曲線的虛軸,的中點(diǎn),過(guò)的直線交雙曲線C于,且,則雙曲線C離心率是____

 

【答案】

【解析】

試題分析:依題意知:,不妨設(shè),設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011313055655839813/SYS201301131307144646451352_DA.files/image005.png">,所以所以代入雙曲線方程得:

考點(diǎn):本小題主要以向量為載體考查橢圓的離心率的求法,考查學(xué)生對(duì)向量的利用能力和對(duì)雙曲線的理解應(yīng)用能力.

點(diǎn)評(píng):解決此題的關(guān)鍵在于求出,而不必求出

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州一模)已知橢圓x2+
y2
4
=1
的左,右兩個(gè)頂點(diǎn)分別為A、B.曲線C是以A、B兩點(diǎn)為頂點(diǎn),離心率為
5
的雙曲線.設(shè)點(diǎn)P在第一象限且在曲線C上,直線AP與橢圓相交于另一點(diǎn)T.
(1)求曲線C的方程;
(2)設(shè)P、T兩點(diǎn)的橫坐標(biāo)分別為x1、x2,證明:x1•x2=1;
(3)設(shè)△TAB與△POB(其中O為坐標(biāo)原點(diǎn))的面積分別為S1與S2,且
PA
PB
≤15
,求S12-S22的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過(guò)坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A(0,
2
)
為圓心,1為半徑的圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于直線y=x對(duì)稱.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)直線y=mx+1與雙曲線C的左支交于A,B兩點(diǎn),另一直線l經(jīng)過(guò)M(-2,0)及AB的中點(diǎn),求直線l在y軸上的截距b的取值范圍;
(Ⅲ)若Q是雙曲線C上的任一點(diǎn),F(xiàn)1F2為雙曲線C的左,右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過(guò)坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A(0,
2
)
為圓心,1為半徑為圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于直線y=x對(duì)稱.
(1)求雙曲線C的方程;
(2)若Q是雙曲線C上的任一點(diǎn),F(xiàn)1、F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程;
(3)設(shè)直線y=mx+1與雙曲線C的左支交于A、B兩點(diǎn),另一直線L經(jīng)過(guò)M(-2,0)及AB的中點(diǎn),求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過(guò)坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A(0,
2
)
為圓心,1為半徑為圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于直線y=x對(duì)稱.
(1)求雙曲線C的方程;
(2)若Q是雙曲線C上的任一點(diǎn),F(xiàn)1、F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案