精英家教網 > 高中數學 > 題目詳情
(2012•北京)設A是如下形式的2行3列的數表,
a b c
d e f
滿足性質P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.
記ri(A)為A的第i行各數之和(i=1,2),Cj(A)為A的第j列各數之和(j=1,2,3);記k(A)為|r1(A)|,|r2(A)|,|c1(A)|,|c2(A)|,|c3(A)|中的最小值.
(1)對如下數表A,求k(A)的值
1 1 -0.8
0.1 -0.3 -1
(2)設數表A形如
1 1 -1-2d
d d -1
其中-1≤d≤0.求k(A)的最大值;
(Ⅲ)對所有滿足性質P的2行3列的數表A,求k(A)的最大值.
分析:(1)根據ri(A)為A的第i行各數之和(i=1,2),Cj(A)為A的第j列各數之和(j=1,2,3);記k(A)為|r1(A)|,|r2(A)|,|c1(A)|,|c2(A)|,|c3(A)|中的最小值可求出所求;
(2)k(A)的定義可求出k(A)=1+d,然后根據d的取值范圍可求出所求;
(III)任意改變A三維行次序或列次序,或把A中的每個數換成它的相反數,所得數表A*仍滿足性質P,并且k(A)=k(A*
因此,不防設r1(A)≥0,c1(A)≥0,c2(A)≥0,然后利用不等式的性質可知3k(A)≤r1(A)+c1(A)+c2(A),從而求出k(A)的最大值.
解答:解:(1)因為r1(A)=1.2,r2(A)=-1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=-1.8,
所以k(A)=0.7
(2)r1(A)=1-2d,r2(A)=-1+2d,c1(A)=c2(A)=1+d,c3(A)=-2-2d
因為-1≤d≤0,
所以|r1(A)|=|r2(A)|≥1+d≥0,|c3(A)|≥1+d≥0
所以k(A)=1+d≤1
當d=0時,k(A)取得最大值1
(III)任給滿足性質P的數表A(如下所示)
          a             b           c
         d             e           f
任意改變A三維行次序或列次序,或把A中的每個數換成它的相反數,所得數表A*仍滿足性質P,并且k(A)=k(A*
因此,不防設r1(A)≥0,c1(A)≥0,c2(A)≥0,
由k(A)的定義知,k(A)≤r1(A),k(A)≤c1(A),k(A)≤c2(A),
從而3k(A)≤r1(A)+c1(A)+c2(A)=(a+b+c)+(a+d)+(b+e)=(a+b+c+d+e+f)+(a+b-f)=a+b-f≤3
所以k(A)≤1
由(2)可知,存在滿足性質P的數表A使k(A)=1,故k(A)的最大值為1.
點評:本題主要考查了進行簡單的演繹推理,同時分析問題的能力以及不等式性質的應用,同時考查了轉化的思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•北京)設a,b∈R.“a=O”是“復數a+bi是純虛數”的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•北京)設不等式組
0≤x≤2
0≤y≤2
,表示的平面區(qū)域為D,在區(qū)域D內隨機取一個點,則此點到坐標原點的距離大于2的概率是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•北京)設A是由m×n個實數組成的m行n列的數表,滿足:每個數的絕對值不大于1,且所有數的和為零,記s(m,n)為所有這樣的數表構成的集合.對于A∈S(m,n),記ri(A)為A的第ⅰ行各數之和(1≤ⅰ≤m),Cj(A)為A的第j列各數之和(1≤j≤n);記K(A)為|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
1 1 -0.8
0.1 -0.3 -1
(2)設數表A∈S(2,3)形如
1 1 c
a b -1
求K(A)的最大值;
(3)給定正整數t,對于所有的A∈S(2,2t+1),求K(A)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•北京模擬)某家俱公司生產甲、乙兩種型號的組合柜,每種組合柜的制造白坯時間、油漆時間如下表:
型號甲 型號乙 生產能力(臺/天)
制白坯時間(天) 6 12 120
油漆時間(天) 8 4 64
設該公司安排甲、乙二種柜的日產量分別為x,y,則20x+24y的最大值為( 。

查看答案和解析>>

同步練習冊答案