【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線方程;

(2)若函數(shù)的圖象與軸有且僅有一個(gè)交點(diǎn),求實(shí)數(shù)的值;

(3)在(2)的條件下,對(duì)任意的,均有成立,求正實(shí)數(shù)的取值范圍.

【答案】(1).

(2).

(3).

【解析】分析:(1)求出導(dǎo)函數(shù),可求出,切線方程為,化簡(jiǎn)后即可;

(2)題意說(shuō)明方程只有一解,分離變量后為,由導(dǎo)數(shù)研究函數(shù)的單調(diào)性,得最大值,同時(shí)研究的函數(shù)值的變化趨勢(shì),可得結(jié)論;

(3),求出導(dǎo)數(shù)后可得的兩解,分類討論求得上的最小值,由這個(gè)最小值可求得的范圍.

詳解:(1)時(shí),,,

,,

所以切線方程為,即.

(2)令 ,

,

易知上為正,遞增;上為負(fù),遞減,

,又∵時(shí),時(shí),

所以結(jié)合圖象可得.

(3)因?yàn)?/span>,所以

,

.

(i)當(dāng)時(shí),(舍去),所以,

時(shí),時(shí), 恒成立,

,所以

(ii)當(dāng)時(shí),,

時(shí),;時(shí),,時(shí),

所以,則

綜上所述,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫(xiě)出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知曲線和曲線交于,兩點(diǎn)(、之間),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點(diǎn)為M,

(1)求過(guò)點(diǎn)M且到點(diǎn)P(0,4)的距離為2的直線l的方程;

(2)求過(guò)點(diǎn)M且與直線l3:x+3y+1=0平行的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面斜坐標(biāo)系中,,平面上任意一點(diǎn)關(guān)于斜坐標(biāo)系的斜坐標(biāo)是這樣定義的:若(其中,分別為與軸,軸同方向的單位向量),則點(diǎn)的斜坐標(biāo)為

(1)若點(diǎn)在斜坐標(biāo)系中的坐標(biāo)為,求點(diǎn)到原點(diǎn)的距離.

(2)求以原點(diǎn)為圓心且半徑為的圓在斜坐標(biāo)系中的方程.

(3)在斜坐標(biāo)系中,若直線交(2)中的圓于兩點(diǎn),則當(dāng)為何值時(shí),的面積取得最大值?并求此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形, , ,且底面.

(1)證明:平面平面

(2)若的中點(diǎn),且,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017514.第一屆一帶一路國(guó)際高峰論壇在北京舉行,為了解不同年齡的人對(duì)一帶一路關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在15-75歲之間的100人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)青少年中老年的人數(shù)之比為9:11

(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有99%的把握認(rèn)為關(guān)注一帶一路是和年齡段有關(guān)?

(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進(jìn)行問(wèn)卷調(diào)查,在這9人中再取3人進(jìn)打面對(duì)面詢問(wèn),記選取的3人中一帶一路的人數(shù)為X,求x的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C1的方程為x2+(y+1)2=4,圓C2的圓心坐標(biāo)為(2,1).

(1)若圓C1與圓C2相交于A,B兩點(diǎn),且|AB|=,求點(diǎn)C1到直線AB的距離;

(2)若圓C1與圓C2相內(nèi)切,求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直二面角中,四邊形是邊長(zhǎng)為2的正方形,上的點(diǎn),且平面.

(1)求證:

(2)求二面角的余弦值;

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角形所在的平面與長(zhǎng)方形所在的平面垂直,.點(diǎn)邊的中點(diǎn),點(diǎn)分別在線段上,且.

(1)證明:;

(2)求二面角的正切值;

(3)求直線與直線PG所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案