【題目】已知圓與直線相切.

(1)求圓的方程;

(2)過點(diǎn)的直線截圓所得弦長(zhǎng)為,求直線的方程;

(3)設(shè)圓軸的負(fù)半抽的交點(diǎn)為,過點(diǎn)作兩條斜率分別為的直線交圓兩點(diǎn),且,證明:直線過定點(diǎn),并求出該定點(diǎn)坐標(biāo).

【答案】(1) ;(2) ;(3).

【解析】試題分析:(1)由圓心到切線距離等于半徑確定圓O的方程;(2)討論直線l的斜率,利用弦長(zhǎng)為明確直線l的斜率;(3)聯(lián)立,分別表示B、C的坐標(biāo),然后表示直線BC的方程,明確定點(diǎn)坐標(biāo).

試題解析:

(1)由題意知,

所以圓的方程為

(2)①若直線的斜率不存在,直線為

此時(shí)截圓所得弦長(zhǎng)為 ,不合題意。

②若直線的斜率存在,設(shè)直線

由題意,圓心到的距離 ,

則直線的方程為

(3)由題意知, 設(shè)直線

可得

,用代替

,所以直線過定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國(guó)道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100ml(不含80)之間,屬于酒后駕車;在80mg/100ml(含80)以上時(shí),屬于醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動(dòng)中,依法檢查了300輛機(jī)動(dòng)車,查處酒后駕車和醉酒駕車的駕駛員共20人,檢測(cè)結(jié)果如表:

酒精含量(mg/100ml)

[20,30)

[30,40)

[40,50)

[50,60)

[60,70)[]

[70,80)

[80,90)

[90,100]

人數(shù)

3

4

1

4

2

3

2

1

繪制出檢測(cè)數(shù)據(jù)的頻率分布直方圖(在圖中用實(shí)線畫出矩形框即可);

求檢測(cè)數(shù)據(jù)中醉酒駕駛的頻率,并估計(jì)檢測(cè)數(shù)據(jù)中酒精含量的眾數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形為等腰梯形,,且于點(diǎn)的中點(diǎn).將沿著折起至的位置,得到如圖所示的四棱錐.

1求證:平面;

2若平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)、一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超過的部分按議價(jià)收費(fèi),為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量單位:噸,將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

1求直方圖中的值;

2設(shè)該市有30萬居民,估計(jì)全市居民中月均用量不低于3噸的人數(shù),并說明理由;

3若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn),估計(jì)的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,,,點(diǎn)的中點(diǎn).

(1)求證:;

(2)求直線平面所成角的弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是直線與橢圓的一個(gè)公共點(diǎn),分別為該橢圓的左右焦點(diǎn),設(shè)取得最小值時(shí)橢圓為

I求橢圓的方程;

II已知是橢圓上關(guān)于軸對(duì)稱的兩點(diǎn),是橢圓上異于的任意一點(diǎn),直線分別與軸交于點(diǎn),試判斷是否為定值,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各式: 

(1);

(2)已知,則;

(3)函數(shù)的圖象與函數(shù)的圖象關(guān)于y軸對(duì)稱;

(4)函數(shù)的定義域是R,則m的取值范圍是;

(5)函數(shù)的遞增區(qū)間為.

正確的______________________.(把你認(rèn)為正確的序號(hào)全部寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|-1x2},B={x|m-1x2m+1},已知BA.

(1)當(dāng)xN時(shí),求集合A的子集的個(gè)數(shù);

(2)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1是函數(shù)的極值點(diǎn),1和是函數(shù)的兩個(gè)不同零點(diǎn),且,求

2若對(duì)任意,都存在為自然對(duì)數(shù)的底數(shù),使得成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案