【題目】
(1)(坐標(biāo)系與參數(shù)方程選做題)曲線C的直角坐標(biāo)方程為x2+y2﹣2x=0,以原點為極點,x軸的正半軸為極軸建立積坐標(biāo)系,則曲線C的極坐標(biāo)方程為 .
(2)(不等式選做題)在實數(shù)范圍內(nèi),不等式|2x﹣1|+|2x+1|≤6的解集為 .
【答案】
(1)ρ=2cosθ
(2){ }
【解析】解:(1)利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2 , 進行代換,得出ρ2﹣2ρcosθ=0.即ρ=2cosθ
所以答案是:ρ=2cosθ
(2)不等式|2x﹣1|+|2x+1|≤6化為不等式|x﹣ |+|x+ |≤3,如圖所示數(shù)軸上點 , 到點 的距離之和為3,所以解集為{ }
所以答案是:{ }
【考點精析】掌握絕對值不等式的解法是解答本題的根本,需要知道含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點坐標(biāo);
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱錐P﹣ABC,點P,A,B,C都在半徑為 的球面上,若PA,PB,PC兩兩垂直,則球心到截面ABC的距離為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)在區(qū)間上有最大值4,最小值0.
(1)求函數(shù)的解析式;
(2)設(shè),若在時恒成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓 + =1(a>b>0)的左、右頂點分別是A,B,左、右焦點分別是F1 , F2 . 若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z滿足|z|= 的虛部為2,z所對應(yīng)的點在第一象限,
(1)求z;
(2)若z,z2,z-z2在復(fù)平面上對應(yīng)的點分別為A,B,C,求cos∠ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為集合A,B={x|x<a}.
(1)求集合A;
(2)若AB,求a的取值范圍;
(3)若全集U={x|x≤4},a=-1,求U A及A∩(U B).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com