【題目】近年來,隨著全球石油資源緊張、大氣污染日益嚴重和電池技術(shù)的提高,電動汽車已被世界公認為21世紀汽車工業(yè)改造和發(fā)展的主要方向.為了降低對大氣的污染和能源的消耗,某品牌汽車制造商研發(fā)了兩款電動汽車車型和車型,并在黃金周期間同時投放市場.為了了解這兩款車型在黃金周的銷售情況,制造商隨機調(diào)查了5家汽車店的銷量(單位:臺),得到下表:
店 | 甲 | 乙 | 丙 | 丁 | 戊 |
車型 | 6 | 6 | 13 | 8 | 11 |
車型 | 12 | 9 | 13 | 6 | 4 |
(1)若從甲、乙兩家店銷售出的電動汽車中分別各自隨機抽取1臺電動汽車作滿意度調(diào)查,求抽取的2臺電動汽車中至少有1臺是車型的概率;
(2)現(xiàn)從這5家汽車店中任選3家舉行促銷活動,用表示其中車型銷量超過車型銷量的店的個數(shù),求隨機變量的分布列和數(shù)學(xué)期望.
【答案】(1);(2)分布列見解析,
【解析】
(1)先根據(jù)古典概型依次求出從甲、乙店分別隨機抽取的1臺電動汽車是車型的概率,然后依據(jù)獨立事件的概率和從對立事件的角度出發(fā)求解問題即可;
(2)由表可知,車型銷量超過車型銷量的店有2家,故的可能取值為0,1,2,然后根據(jù)超幾何分布求概率的方法逐一求出每個的取值所對應(yīng)的概率即可得分布列,進而求得數(shù)學(xué)期望.
(1)解:設(shè)“從甲店隨機抽取的1臺電動汽車是車型”為事件,
“從乙店,隨機抽取的1臺電動汽車是車型”為事件,
依題意,,,且事件、相互獨立,
設(shè)“抽取的2臺電動汽車中至少有1臺是車型”為事件,
則.
(2)解:由表可知,車型銷量超過車型銷量的店有2家,
故的所有可能取值為:0,1,2,
且,
,
,
所以隨機變量的分布列為:
0 | 1 | 2 | |
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)由方程確定,對于函數(shù)給出下列命題:
①存在,,使得成立;
②,,使得且同時成立;
③對于任意,恒成立;
④對任意,,;都有恒成立.
其中正確的命題共有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十項全能是由跑、跳、投等10個田徑項目組成的綜合性男子比賽項目,按照國際田徑聯(lián)合會制定的田徑運動全能評分表計分,然后將各個單項的得分相加,總分多者為優(yōu)勝.下面是某次全能比賽中甲、乙兩名運動員的各個單項得分的雷達圖.
下列說法錯誤的是( )
A.在100米項目中,甲的得分比乙高
B.在跳高和標槍項目中,甲、乙的得分基本相同
C.甲的各項得分比乙更均衡
D.甲的總分高于乙的總分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為菱形,,.平面平面,,,分別是,的中點.
(1)求證://平面;
(2)若直線與平面所成的角為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與圓相外切,且與直線相切.
(1)記圓心的軌跡為曲線,求的方程;
(2)過點的兩條直線與曲線分別相交于點和,線段和的中點分別為.如果直線與的斜率之積等于1,求證:直線經(jīng)過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,用一個半徑為10厘米的半圓紙片卷成一個最大的無底圓錐,放在水平桌面上,被一陣風(fēng)吹倒.
(1)求該圓錐的表面積和體積;
(2)求該圓錐被吹倒后,其最高點到桌面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,,為邊的中點,將沿直線翻折成,設(shè)為線段的中點.則在翻折過程中,給出如下結(jié)論:
①當(dāng)不在平面內(nèi)時,平面;
②存在某個位置,使得;
③線段的長是定值;
④當(dāng)三棱錐體積最大時,其外接球的表面積為.
其中,所有正確結(jié)論的序號是______.(請將所有正確結(jié)論的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省即將實行新高考,不再實行文理分科.某校為了研究數(shù)學(xué)成績優(yōu)秀是否對選擇物理有影響,對該校2018級的1000名學(xué)生進行調(diào)查,收集到相關(guān)數(shù)據(jù)如下:
(1)根據(jù)以上提供的信息,完成列聯(lián)表,并完善等高條形圖;
選物理 | 不選物理 | 總計 | |
數(shù)學(xué)成績優(yōu)秀 | |||
數(shù)學(xué)成績不優(yōu)秀 | 260 | ||
總計 | 600 | 1000 |
(2)能否在犯錯誤的概率不超過0.05的前提下認為數(shù)學(xué)成績優(yōu)秀與選物理有關(guān)?
附:
臨界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面為平行四邊形,,且,,是棱的中點.
(1)求證:平面;
(2)求直線與平面所成角的正弦值;
(3)在線段上(不含端點)是否存在一點,使得二面角的余弦值為?若存在,確定的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com