【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,計(jì)算得 =80, =20, i=184, =720.
(1)求家庭的月儲(chǔ)蓄對(duì)月收入的回歸方程;
(2)判斷月收入與月儲(chǔ)蓄之間是正相關(guān)還是負(fù)相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
【答案】
(1)解:由題意,n=10, = =8, = =2,
∴b= =0.3,a=2﹣0.3×8=﹣0.4,
∴y=0.3x﹣0.4;
(2)解:∵b=0.3>0,
∴y與x之間是正相關(guān)
(3)解:x=7時(shí),y=0.3×7﹣0.4=1.7(千元)
【解析】(1)由題意可知n, , ,進(jìn)而代入可得b、a值,可得方程;(2)由回歸方程x的系數(shù)b的正負(fù)可判;(3)把x=7代入回歸方程求其函數(shù)值即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 平面, , , , , 為線(xiàn)段上的點(diǎn).
(1)證明: 平面;
(2)若是的中點(diǎn),求與平面所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四棱錐中,已知異面直線(xiàn)與所成的角為,給出下面三個(gè)命題:
:若,則此四棱錐的側(cè)面積為;
:若分別為的中點(diǎn),則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知隨機(jī)變量X服從正態(tài)分布N(μ,σ2),且P(μ﹣2σ<X<μ+2σ)=0.954 4,P(μ﹣σ<X<μ+σ)=0.6826.若μ=4,σ=1,則P(5<X<6)=( )
A.0.1359
B.0.1358
C.0.2718
D.0.2716
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用0,1,2,3,4,5這六個(gè)數(shù)字:
(1)能組成多少個(gè)無(wú)重復(fù)數(shù)字的四位偶數(shù)?
(2)能組成多少個(gè)無(wú)重復(fù)數(shù)字且為5的倍數(shù)的五位數(shù)?
(3)能組成多少個(gè)無(wú)重復(fù)數(shù)字且比1325大的四位數(shù)?(以上各問(wèn)均用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為,其中為參數(shù), ,再以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,其中, ,直線(xiàn)與曲線(xiàn)交于兩點(diǎn).
(1)求的值;
(2)已知點(diǎn),且,求直線(xiàn)的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)l1:ax﹣y+b=0,l2:bx+y﹣a=0(ab≠0)的圖象只可能是圖中的( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)甲、乙兩名籃球運(yùn)動(dòng)員分別在100場(chǎng)比賽中的得分情況進(jìn)行統(tǒng)計(jì),做出甲的得分頻率分布直方圖如圖所示,列出乙的得分統(tǒng)計(jì)表如表所示:
分值 | [0,10) | [10,20) | [20,30) | [30,40) |
場(chǎng)數(shù) | 10 | 20 | 40 | 30 |
(1)估計(jì)甲在一場(chǎng)比賽中得分大于等于20分的概率.
(2)判斷甲、乙兩名運(yùn)動(dòng)員哪個(gè)成績(jī)更穩(wěn)定.(結(jié)論不要求證明)
(3)試?yán)眉椎念l率分布直方圖估計(jì)甲每場(chǎng)比賽的平均得分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x|+ ﹣1(x≠0)
(1)當(dāng)m=1時(shí),判斷f(x)在(﹣∞,0)的單調(diào)性,并用定義證明;
(2)若對(duì)任意x∈(1,+∞),不等式 f(log2x)>0恒成立,求m的取值范圍.
(3)討論f(x)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com