拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在射線x-y+1=0(x≥0)上
(1)求拋物線的標(biāo)準(zhǔn)方程
(2)過(1)中拋物線的焦點(diǎn)F作動弦AB,過A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M,求點(diǎn)M的軌跡方程,并求出
FC
FD
FM
2
的值.
(1)∵是標(biāo)準(zhǔn)方程,∴其焦點(diǎn)應(yīng)該在坐標(biāo)軸上,
∴令x=0,代入射線x-y+1=0,解得其焦點(diǎn)坐標(biāo)為(0,1)
當(dāng)焦點(diǎn)為(0,1)時,可知P=2,∴其方程為x2=4y.
(2)設(shè)A(x1
x21
4
)
,B(x2
x2
4
2
)

過拋物線A,B兩點(diǎn)的切線方程分別是y=
x1
2
x-
1
4
x12
y=
x2
2
x-
x2
4
2

其交點(diǎn)坐標(biāo)M(
x1+x2
2
,
y1+y2
2
)

設(shè)AB的直線方程y=kx+1代入x2=4y,得x2-4kx-4=0
x1x2=-4,M(
x1+x2
2
,-1),所以點(diǎn)M的軌跡為y=-1

FC
=(x1
x21
4
-1),
FD
=(x2,
x22
4
-1)

FC
FD
=x1x2+(
x21
4
-1)(
x22
4
-1)=-
1
4
(
x21
+
x22
)-2

FM2
=(
x1+x2
2
-0)2+(-1-1)2=
1
4
(
x21
+
x22
)+2

FC
FD
FM
2
=-1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、拋物線的頂點(diǎn)在原點(diǎn),對稱軸是坐標(biāo)軸,且焦點(diǎn)在直線x-y+4=0上,則此拋物線方程為
y2=-16x或x2=16y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-2,則拋物線的方程是( 。
A、y2=-8xB、y2=8xC、y2=-4xD、y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇一模)本題主要考查拋物線的標(biāo)準(zhǔn)方程、簡單的幾何性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解、推理論證的能力.
如圖,在平面直角坐標(biāo)系xOy,拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(1,0).過拋物線在x軸上方的不同兩點(diǎn)A、B,作拋物線的切線AC、BD,與x軸分別交于C、D兩點(diǎn),且AC與BD交于點(diǎn)M,直線AD與直線BC交于點(diǎn)N.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)求證:MN⊥x軸;
(3)若直線MN與x軸的交點(diǎn)恰為F(1,0),求證:直線AB過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的頂點(diǎn)在原點(diǎn),對稱軸是坐標(biāo)軸,且焦點(diǎn)在直線x-y+2=0上,則此拋物線方程為
y2=-8x或x2=8y
y2=-8x或x2=8y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)實(shí)軸長為4
3
的橢圓的中心在原點(diǎn),其焦點(diǎn)F1,,F(xiàn)2在x軸上.拋物線的頂點(diǎn)在原點(diǎn)O,對稱軸為y軸,兩曲線在第一象限內(nèi)相交于點(diǎn)A,且AF1⊥AF2,△AF1F2的面積為3.
(Ⅰ)求橢圓和拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)A作直線l分別與拋物線和橢圓交于B,C,若
AC
=2
AB
,求直線l的斜率k.

查看答案和解析>>

同步練習(xí)冊答案