設(shè)F1,F(xiàn)2為橢圓
x2
36
+
y2
16
=1
的兩個焦點(diǎn),P是橢圓上一點(diǎn),已知P,F(xiàn)1,F(xiàn)2是一個直角三角形的三個頂點(diǎn),且|PF1|>|PF2|.
(1)若∠PF2F1是直角,求|PF1|-|PF2|的值;
(2)若∠F1PF2是直角,求
|
PF1
|
|
PF2
|
的值.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(1)由已知條件推導(dǎo)出|PF1|2=(12-|PF1|)2+80,從而能求出|PF1|,|PF2|,由此能求出|PF1|-|PF2|的值.
(2)由已知條件推導(dǎo)出2|PF1|2-24|PF1|+64=0,從而能求出|PF1|,|PF2|,由此能求出
|
PF1
|
|
PF2
|
的值.
解答: 解:(1)∵F1,F(xiàn)2為橢圓
x2
36
+
y2
16
=1
的兩個焦點(diǎn),P是橢圓上一點(diǎn),
P,F(xiàn)1,F(xiàn)2是一個直角三角形的三個頂點(diǎn),
且|PF1|>|PF2|,∠PF2F1是直角,
|PF1|2=|PF2|2+|F1F2|2
|PF1|2=(12-|PF1|)2+80,
解得|PF1|=
28
3
,|PF2|=
8
3
,
|PF1|-|PF2|=
20
3
.(6分)
(2)由(1)知,若∠F1PF2是直角,則|PF1|2+(12-|PF1|)2=80,
2|PF1|2-24|PF1|+64=0,
解得|PF1|=8,|PF2|=4,
|
PF1
|
|
PF2
|
=2
.(12分)
點(diǎn)評:本題考查兩線段之差和兩線段比值的求法,是中檔題,解題時要熟練掌握橢圓的簡單性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC外接圓半徑等于1,其圓心O滿足
AO
=
1
2
(
AB
+
AC
),|
AO
|=|
AC
|
,則向量
BA
BC
方向上的投影等于( 。
A、-
3
2
B、
3
2
C、
3
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線L:y=kx+1與橢圓C:ax2+y2=2(a>1)交于A、B兩點(diǎn),以O(shè)A、OB為鄰邊作平行四邊形OAPB(O為坐標(biāo)原點(diǎn)).
(1)若k=1,且四邊形OAPB為矩形,求a的值;
(2)若a=2,當(dāng)k變化時(k∈R),求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F(1,0),離心率e=
2
2
,A,B是橢圓上的動點(diǎn).
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)若直線OA與OB的斜率乘積kOA•kOB=-
1
2
,動點(diǎn)P滿足
OP
=
OA
OB
,(其中實(shí)數(shù)λ為常數(shù)).問是否存在兩個定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值?若存在,求F1,F(xiàn)2的坐標(biāo),若不存在,說明理由;
(Ⅲ)若點(diǎn)A在第一象限,且點(diǎn)A,B關(guān)于原點(diǎn)對稱,點(diǎn)A在x軸上的射影為C,連接BC并延長交橢圓于點(diǎn)D.證明:AB⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M的中心原點(diǎn)O,點(diǎn)F(-1,0)是它的一個焦點(diǎn),直線L過點(diǎn)F與橢圓M交于P、Q兩點(diǎn),當(dāng)直線L的斜率不存在時,
OP
OQ
=
1
2

(1)求橢圓M的方程;
(2)設(shè)A、B、C是橢圓M上的不同三點(diǎn),且
OA
+
OB
+
OC
=0
,證明直線AB與OC的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
4
+y2=1的左、右頂點(diǎn)分別為A、B,圓x2+y2=4上有一動點(diǎn)P,P在x軸上方,C(1,0),直線PA交橢圓E于點(diǎn)D,連結(jié)DC,PB.
(Ⅰ)若∠ADC=90°,求△ADC的面積S;
(Ⅱ)設(shè)直線PB,DC的斜率存在且分別為k1,k2,若k1=2k2,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線段AB的端點(diǎn)B的坐標(biāo)是(1,2),端點(diǎn)A在圓(x+1)2+y2=4上運(yùn)動,點(diǎn)M是AB的中點(diǎn).
(1)若點(diǎn)M的軌跡為曲線C,求此曲線的方程;
(2)設(shè)直線l:x+y+3=0,求曲線C上的點(diǎn)到直線l距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-x)ex-1.
(Ⅰ)求函數(shù)f(x)的最大值;
(Ⅱ)設(shè)g(x)=
f(x)
x
,x>-1且x≠0,證明:g(x)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從等腰直角△ABC的底邊BC上任取一點(diǎn)D,則△ABD為銳角三角形的概率為
 

查看答案和解析>>

同步練習(xí)冊答案