【題目】函數(shù)y=f(x)的導函數(shù)y=f′(x)的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是( )
A.
B.
C.
D.
【答案】D
【解析】解:由當f′(x)<0時,函數(shù)f(x)單調遞減,當f′(x)>0時,函數(shù)f(x)單調遞增,
則由導函數(shù)y=f′(x)的圖象可知:f(x)先單調遞減,再單調遞增,然后單調遞減,最后單調遞增,排除A,C,
且第二個拐點(即函數(shù)的極大值點)在x軸上的右側,排除B,
故選D
根據(jù)導數(shù)與函數(shù)單調性的關系,當f′(x)<0時,函數(shù)f(x)單調遞減,當f′(x)>0時,函數(shù)f(x)單調遞增,根據(jù)函數(shù)圖象,即可判斷函數(shù)的單調性,然后根據(jù)函數(shù)極值的判斷,即可判斷函數(shù)極值的位置,即可求得函數(shù)y=f(x)的圖象可能
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率為,它的一個頂點恰好是拋物線x2=4y的焦點.
(1)求橢圓C的方程;
(2)直線x=2與橢圓交于P,Q兩點,P點位于第一象限,A,B是橢圓上位于直線x=2兩側的動點.
①若直線AB的斜率為,求四邊形APBQ面積的最大值;
②當點A,B運動時,滿足∠APQ=∠BPQ,問直線AB的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣ ax2 , a∈R,
(1)當a=2時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)設函數(shù)g(x)=f(x)+(x﹣a)cosx﹣sinx,討論g(x)的單調性并判斷有無極值,有極值時求出極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學藝術專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;
(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A(1,0,0),B(0,1,0),C(0,0,2).
(1)若,求點D的坐標;
(2)問是否存在實數(shù)α,β,使得=α+β成立?若存在,求出α,β的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知正四面體D﹣ABC(所有棱長均相等的三棱錐),P、Q、R分別為AB、BC、CA上的點,AP=PB, = =2,分別記二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角為α、β、γ,則( )
A.γ<α<β
B.α<γ<β
C.α<β<γ
D.β<γ<α
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點.
(Ⅰ)證明:CE∥平面PAB;
(Ⅱ)求直線CE與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 等比數(shù)列{bn}的前n項和為Tn , a1=﹣1,b1=1,a2+b2=2.
(Ⅰ)若a3+b3=5,求{bn}的通項公式;
(Ⅱ)若T3=21,求S3 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com