精英家教網 > 高中數學 > 題目詳情
設函數f(x)=(
1
4
x-(
1
2
x+1,不等式f(x)≤2a-1對x∈[-3,2]恒成立,則實數a的取值范圍為
[29,+∞)
[29,+∞)
分析:令t=(
1
2
)
x
,則f(x)=g(t)=t2-t+1.由題意可得,當x∈[-3,2]時,2a-1大于或等于f(x)的最大值.利用二次函數的性質求得函數f(x)=g(t)的最大值,即可求得a的范圍.
解答:解:令t=(
1
2
)
x
,則t>0,f(x)=t2-t+1.
令g(t)=t2-t+1=(t-
1
2
)
2
+
3
4
,則當x∈[-3,2]時,
1
4
≤t≤8,函數g(t)的最大值為g(8)=57.
由題意可得,2a-1≥57,解得 a≥29,
故答案為[29,+∞).
點評:本題主要考查復合函數的單調性,二次函數的性質,體現了轉化的數學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=ax3-3x+1(x∈R),若對于任意的x∈[-1,1]都有f(x)≥0成立,則實數a的值為
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•安徽)設函數f(x)=ax-(1+a2)x2,其中a>0,區(qū)間I={x|f(x)>0}
(Ⅰ)求I的長度(注:區(qū)間(a,β)的長度定義為β-α);
(Ⅱ)給定常數k∈(0,1),當1-k≤a≤1+k時,求I長度的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•浦東新區(qū)二模)記函數f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
(1)判斷函數f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)設函數f(x)=log2(1-2x),求f(x)的反函數f-1(x),并判斷f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

記函數f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素,
例如f(x)=-x+1,對任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)設函數f(x)=log2(1-2x),判斷f(x)是否是M的元素,并求f(x)的反函數f-1(x);
(2)f(x)=
axx+b
∈M
(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)設函數f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
(2)設正數P1,P2,P3,…P2n滿足P1+P2+…P2n=1,求證:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.

查看答案和解析>>

同步練習冊答案