【題目】如圖,,為異面直線(xiàn),且,,上兩點(diǎn),上兩點(diǎn),,,,分別交于點(diǎn),.

1)求證:四邊形為平行四邊形;

2)若,,所成角為,求四邊形的面積.

【答案】1)證明見(jiàn)解析;(2.

【解析】

1)根據(jù)直線(xiàn)與平面平行的性質(zhì)定理和平行公理可證,再根據(jù)平行四邊形的判定定理可證結(jié)論正確;

2)根據(jù)題意求出平行四邊的鄰邊長(zhǎng)和夾角后,用三角形面積公式求出三角形面積,進(jìn)而可得平行四邊形的面積.

1)證明:如圖:

因?yàn)?/span>,直線(xiàn)在平面內(nèi),平面交于,所以,

同理,,所以

因?yàn)?/span>,直線(xiàn)在平面內(nèi),平面交于,所以

同理,,所以,

所以四邊形為平行四邊形.

2)由,知中點(diǎn),

由(1)知,,所以的中點(diǎn),

所以,

同理

因?yàn)?/span>所成角為,又,,

所以(或),

所以四邊形的面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合,,其中,若中有且僅有一個(gè)元素,則r的值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè){an}是一個(gè)首項(xiàng)為2,公比為qq1)的等比數(shù)列,且3a1,2a2a3成等差數(shù)列.

1)求{an}的通項(xiàng)公式;

2)已知數(shù)列{bn}的前n項(xiàng)和為Sn,b1=1,且1n2),求數(shù)列{anbn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))的周期為,圖像的一個(gè)對(duì)稱(chēng)中心為,將函數(shù)圖像上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變),在將所得圖像向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖像.

1)求函數(shù)的解析式;

2)是否存在,使得,,按照某種順序成等差數(shù)列?若存在,請(qǐng)確定的個(gè)數(shù);若不存在,說(shuō)明理由.

3)求實(shí)數(shù)a與正整數(shù)n,使得內(nèi)恰有2013個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四位同學(xué)參加三項(xiàng)不同的競(jìng)賽.

1)每位同學(xué)必須參加一項(xiàng),有幾種不同結(jié)果?

2)每項(xiàng)競(jìng)賽只有且必須有一位同學(xué)參加,有幾種不同結(jié)果?

3)每位同學(xué)最多參加一項(xiàng),且每項(xiàng)競(jìng)賽只許有一位同學(xué)參加,有幾種不同結(jié)果?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)有個(gè)元素的總體進(jìn)行抽樣,先將總體分成兩個(gè)子總體m是給定的正整數(shù),且),再?gòu)拿總(gè)子總體中各隨機(jī)抽取2個(gè)元素組成樣本,用表示元素ij同時(shí)出現(xiàn)在樣本中的概率,則_________;所有的和等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADBC是四面體ABCD中互相垂直的棱,BC=2. AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數(shù),則四面體ABCD的體積的最大值是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】著名數(shù)學(xué)家華羅庚先生曾說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休.”在數(shù)學(xué)的學(xué)習(xí)和研究中,我們經(jīng)常用函數(shù)的圖象來(lái)研究函數(shù)的性質(zhì),也經(jīng)常用函數(shù)的解析式來(lái)琢磨函數(shù)的圖象的特征,如某體育品牌的LOGO,可抽象為如圖所示的軸對(duì)稱(chēng)的優(yōu)美曲線(xiàn),下列函數(shù)中,其圖象大致可“完美”局部表達(dá)這條曲線(xiàn)的函數(shù)是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=|x+1||2x2|的最大值為M,正實(shí)數(shù)a,b滿(mǎn)足a+bM

1)求2a2+b2的最小值;

2)求證:aabbab

查看答案和解析>>

同步練習(xí)冊(cè)答案