【題目】已知函數(shù).
(1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;
(2)若,設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)k的取值范圍.
【答案】(1)答案見解析(2)
【解析】
(1)先對函數(shù)進(jìn)行求導(dǎo)得,對分成和兩種情況討論,從而得到相應(yīng)的單調(diào)區(qū)間;
(2)對函數(shù)求導(dǎo)得,從而有,,,三個(gè)方程中利用得到.將不等式的左邊轉(zhuǎn)化成關(guān)于的函數(shù),再構(gòu)造新函數(shù)利用導(dǎo)數(shù)研究函數(shù)的最小值,從而得到的取值范圍.
解:(1)由,,
則,
當(dāng)時(shí),則,故在上單調(diào)遞減;
當(dāng)時(shí),令,
所以在上單調(diào)遞減,在上單調(diào)遞增.
綜上所述:當(dāng)時(shí),在上單調(diào)遞減;
當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.
(2)∵,
,
由得,
∴,,∴
∵∴解得.
∴.
設(shè),
則,
∴在上單調(diào)遞減;
當(dāng)時(shí),.
∴,即所求的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點(diǎn)E是BC邊的中點(diǎn),將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.
(Ⅰ)求證:AB⊥平面ADC;
(Ⅱ)若AD=2,直線CA與平面ABD所成角的正弦值為,求二面角E-AD-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),函數(shù)為的導(dǎo)函數(shù).
(1)若,都有成立(其中),求的值;
(2)證明:當(dāng)時(shí),;
(3)設(shè)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左右焦點(diǎn)為為它的中心,為雙曲線右支上的一點(diǎn),的內(nèi)切圓圓心為,且圓與軸相切于點(diǎn),過作直線的垂線,垂足為,若雙曲線的離心率為,則( )
A.B.C.D.與關(guān)系不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在所有棱長都相等的三棱錐中,D,E,F分別是AB,BC,CA的中點(diǎn),下列四個(gè)命題:
(1)平面PDF;(2)平面;
(3)平面平面;(4)平面平面.
其中正確命題的序號為________.
A.(2)(3)B.(1)(3)C.(2)(4)D.(1)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù),直線與曲線分別交于兩點(diǎn).
(1)若點(diǎn)的極坐標(biāo)為,求的值;
(2)求曲線的內(nèi)接矩形周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,說法正確的個(gè)數(shù)是( )
(1)若pq為真命題,則p,q均為真命題
(2)命題“x0∈R,0”的否定是“x∈R,2x0”
(3)“”是“x∈[1,2],x2﹣恒成立”的充分條件
(4)在△ABC中,“”是“sinA>sinB”的必要不充分條件
(5)命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:的左焦點(diǎn)為,過的直線與交于,兩點(diǎn),點(diǎn)的坐標(biāo)為.
(1)若點(diǎn)也是頂點(diǎn)為原點(diǎn)的拋物線的焦點(diǎn),求拋物線的方程;
(2)當(dāng)與軸垂直時(shí),求直線的方程;
(3)設(shè)為坐標(biāo)原點(diǎn),證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com