【題目】2016114日,國防科工局宣布,嫦娥四號任務已經通過了探月工程重大專項領導小組審議通過,正式開始實施.如圖所示,假設嫦娥四號衛(wèi)星將沿地月轉移軌道飛向月球后,在月球附近一點P變軌進入以月球球心F為一個焦點的橢圓軌道繞月飛行,之后衛(wèi)星在P點第二次變軌進入仍以F為一個焦點的橢圓軌道繞月飛行.若用2c12c2分別表示橢圓軌道的焦距,用2a12a2分別表示橢圓軌道的長軸長,給出下列式子:

a1c1a2c2; a1c1a2c2; c1a2>a1c2.

其中正確式子的序號是( )

A.①③B.②③C.①④D.②④

【答案】B

【解析】

由圖可知,,即可判斷選項,再由整理可判斷,由,可以判斷的正確性.

由圖可得,所以,即錯誤;因為,所以,即正確,由,得,即,即,即,可得正確,由,可得,即錯誤;綜上所述選項B正確.

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】菱形中,平面,,

1)證明:直線平面;

2)求二面角的正弦值;

3)線段上是否存在點使得直線與平面所成角的正弦值為?若存在,求;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,、為橢圓的左、右焦點,為橢圓上一點,且.

1)求橢圓的標準方程;

2)設直線,過點的直線交橢圓于、兩點,線段的垂直平分線分別交直線、直線兩點,當最小時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形平面,,且分別為的中點.

1)證明:平面;

2)若,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),,其中為正實數(shù).

1)若的圖象總在函數(shù)的圖象的下方,求實數(shù)的取值范圍;

2)設,證明:對任意,都有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,楔形幾何體由一個三棱柱截去部分后所得,底面側面,,楔面是邊長為2的正三角形,點在側面的射影是矩形的中心,點上,且

1)證明:平面;

2)求楔面與側面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中,四邊形為矩形,的中點.

1)求證:平面;

2)若平面平面,,,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過橢圓 的左右焦點分別作直線, 交橢圓于,且.

(1)求證:當直線的斜率與直線的斜率都存在時, 為定值;

(2)求四邊形面積的最大值.

查看答案和解析>>

同步練習冊答案